1: ribosomes
5: nucleus
11: vacuole
13: rough endoplasmic reticulum
10: chloroplasts
8: cellulose
12: chromosome
7: cell membrane
3: organelle
Hi!
The correct option would be A.
This is because the displacement reaction would take place as follows
Ca + ZnCl2 --> CaCl2 + Zn
A displacement reaction is one in which a substitution occurs, as the more reactive element in the mixture replaces one that is less reactive.
In the electrochemical series, we find Ca higher than Zn, which is indicative of Ca being more reactive, and having the capacity to displace Zn to form a compound.
Option D would be incorrect as no such substitution occurs.
Option B would be incorrect because again, there is no substitution occurring, and also because two metals alone (Ca and Zn in our case) can never react to form a compound.
Option C would be incorrect because it is not possible because CaCl and ZnCl are forms that are too unstable to exist due to an overall positive charge.
Hope this helps!
Answer:
In this phenomenon we talk about ideal gases, that is why in these equations the constant is the number of moles and the constant R, which has a value of 0.082
Explanation:
The complete equation would have to be P x V = n x R x T
where n is the number of moles, and if it is not clarified it is because they remain constant, as the question was worded.
On the other hand, the symbol R refers to the ideal gas constant, which declares that a gas behaves like an ideal gas during the reaction, and its value will always be the same, which is why it is called a constant. The value of R = 0.082.
The ideal gas model assumes that the volume of the molecule is zero and the particles do not interact with each other. Most real gases approach this constant within two significant figures, under pressure and temperature conditions sufficiently far from the liquefaction or sublimation point. The real gas equations of state are, in many cases, corrections to the previous one.
The universal constant of ideal gases is not a fundamental constant (therefore, choosing the temperature scale appropriately and using the number of particles, we can have R = 1, although this system of units is not very practical)
Answer : The types of radiation known to be emitted by radioactive elements are, alpha particles, beta particles, or gamma rays.
Explanation :
Radioactive decay : It the process in which an unstable atomic nucleus loses energy by emitting the radiations like, alpha particles, beta particles, or gamma rays.
The naturally occurring radioactive elements are, radium, thorium, and uranium.
Alpha particle : It is also known as alpha radiation or alpha ray that consists of 2 protons and 2 neutrons that are bound together into a particle that is identical to the helium nucleus. It is produced in the process of alpha decay.
Beta particle : It is also known as beta radiation or beta ray. During the beta decay process, a high energy and speed electron or positron are emitted by the radioactive decay of atomic nucleus.
Gamma particle : It is also a gamma radiation or gamma ray that is arising from the radioactive decay of atomic nuclei. It has shortest wavelength waves and imparts high photon energy can pass through most forms of matters because they have no mass.
Answer:
6 Cl atoms
Explanation:
In one molecule of ZnCl2, we have 2 atoms of Cl
Therefore, in 3 molecules of ZnCl2, we'll have 3(2) atoms of Cl = 6 atoms of Cl.
please mark brainliest