Answer:
The answer to your question is 0.5 liters
Explanation:
Data
[CaCl₂] = 4.0 M
number of moles = 2
volume = ?
Process
To solve this problem use the formula of Molarity and solve it for volume, substitute the values and simplify.
-Formula
Molarity = moles / volume
-Solve for volume
Volume = moles / molarity
-Substitution
Volume = 2/4
-Simplification
Volume = 0.5 liters.
Answer:
Na₂CO₃•H₂O
Explanation:
After it is heated, the remaining mass is the mass of sodium carbonate.
30.2 g Na₂CO₃
Mass is conserved, so the difference is the mass of the water:
35.4 g − 30.2 g = 5.2 g H₂O
Convert masses to moles:
30.2 g Na₂CO₃ × (1 mol Na₂CO₃ / 106 g Na₂CO₃) = 0.285 mol Na₂CO₃
5.2 g H₂O × (1 mol H₂O / 18.0 g H₂O) = 0.289 mol H₂O
Normalize by dividing by the smallest:
0.285 / 0.285 = 1.00 mol Na₂CO₃
0.289 / 0.285 = 1.01 mol H₂O
The ratio is approximately 1:1. So the formula of the hydrate is Na₂CO₃•H₂O.
Attraction between polar molecules
C. ionization reaction...
THANKS!!
Answer:
The mean free path = 2.16*10^-6 m
Explanation:
<u>Given:</u>
Pressure of gas P = 100 kPa
Temperature T = 300 K
collision cross section, σ = 2.0*10^-20 m2
Boltzmann constant, k = 1.38*10^-23 J/K
<u>To determine:</u>
The mean free path, λ
<u>Calculation:</u>
The mean free path is related to the collision cross section by the following equation:
where n = number density
Substituting for P, k and T in equation (2) gives:
Next, substituting for n and σ in equation (1) gives: