Answer:

Explanation:
Henry's law states that the solubility of a gas is directly proportional to its partial pressure. The equation may be written as:

Where
is Henry's law constant.
Our strategy will be to identify the Henry's law constant for oxygen given the initial conditions and then use it to find the solubility at different conditions.
Given initially:

Also, at sea level, we have an atmospheric pressure of:

Given mole fraction:

According to Dalton's law of partial pressures, the partial pressure of oxygen is equal to the product of its mole fraction and the total pressure:

Then the equation becomes:

Solve for
:

Now we're given that at an altitude of 12,000 ft, the atmospheric pressure is now:

Apply Henry's law using the constant we found:

I am pretty sure the answer is D. That the patterns of a polarity matched up on both sides.
Answer:
The correct answer is "-268.667°C".
Explanation:
Given:
Temperature,
= 4.483 K (below)
Now,
The formula of temperature conversion will be:
⇒ 
By putting the values, we get
⇒ 
⇒ 
Thus the above is the correct answer.
Answer:
Bacteria
Explanation:
hope this helps please gimme brainliest
The formula for mole fraction is:
-(1)
The solubility of oxygen gas = 1.0 mmol/L (given)
1.0 mmol/L means 1.0 mmol are present in 1 L.
Converting mmol to mol:

So, moles of oxygen = 0.001 mol
For moles of water:
1 L of water = 1000 mL of water
Since, the density of water is 1.0 g/mL.


So, the mass of water is 1000 g.
Molar mass of water = 18 g/mol.
Number of moles of water = 
Substituting the values in formula (1):


Hence, the mole fraction is
.