8.8 × 10-5 M is the [H3O+] concentration in 0.265 M HClO solution.
Explanation:
HClO is a weak acid and does not completely dissociate in water as ions.
the equation of dissociation can be written and ice table to be formed.
HClO +H2O ⇒ ClO- + H3O+
I 0.265 0 0
C -x +x +x
E 0.265-x +x +x
Now applying the equation of Ka, where Ka is given as 2.9 × 10-8.
Ka = ![\frac{[ClO-][H3O+]}{[HClO]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BClO-%5D%5BH3O%2B%5D%7D%7B%5BHClO%5D%7D)
2.9 × 10^-8 = ![\frac{[x] [x]}{[0.265-x]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bx%5D%20%5Bx%5D%7D%7B%5B0.265-x%5D%7D)
= 7.698 x
x = 8.8 × 10-5 M
The hydronium ion concentration is 8.8 × 10-5 M in 0.265 M solution of HClO.
Answer:
Rock
Explanation:
Let's calculate the density of each object:
Rock:
Pencil:

Therefore the rock is denser.
Answer:
The bladder wall is made of many layers, including: Urothelium or transitional epithelium. This is the layer of cells that lines the inside of the kidneys, ureters, bladder, and urethra. Cells in this layer are called urothelial cells or transitional cells
Explanation:
Answer: (B) Pressure is due to the collisions of the gas particles with the walls of the container.
Option B helps to explain the factor behind gas collision under high pressure.
Explanation: Kinetic molecular theory explains the behaviour and movement of gas particles when they are in motion. It states that gas particles are always in continuous motion and are perfectly elastic in nature.
Kinetic molecular theory can be explained using both Boyle's law and Charles's law.
•Few Assumptions of Kinetic Molecular Theory.
1. Gas particles are always in motion and they collide with the walls of their container.
2. The space occupied by a gas particles is negligible in comparison to the volume of the gas