In a perfect world without air resistance, the top of the swing would have the most potential energy, but the least amount of kinetic energy. As the pendulum falls down, it gains more kinetic energy as it travels faster due to gravitational acceleration but loses more potential energy as it loses height. The total amount of energy in the system (the sum of kinetic and potential energy) stays the same.
The atmosphere is considered homogeneous. It isn’t exactly on the smallest scales but that doesn’t matter. Homogenous means the composition will be the same in any sample taken from the substance. And clearly, the atmosphere is mostly gas. So the last answer is right
Answer:
accelerating
Explanation:
technically, there is no such thing as deceleration, just negative acceleration.
Answer:
See explanation
Explanation:
According to Hund's rule, electrons must occur singly first before pairing takes place.
If I want to fill six electrons into orbitals, the filling of electrons will be as follows;
1s2 2s2 2p2.
The first four electrons are filled into the 1s and 2s levels having only one orbital each. The fifth and sixth electrons are filled into 2p orbitals. The 2p level have three degenerate orbitals. The two electrons are singly filled into each of the degenerate orbitals in accordance to Hund's rule.
Heat
gained in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)</span>
1540 = 200.0 (C)(40 - 20)
<span>
<span>C = 0.385 J / g C</span></span>
<span><span>
</span></span>
<span><span>Hope this answers the question. Have a nice day.</span></span>