The answer is 1.56L. Avogadro's Law states that the volume of a gas is directly proportional to the number of moles (or a number of particles) of gas when the temperature and pressure are held constant.
V∝n
V₁/n₁m= V₂/n₂
V₁ = initial volume of gas = 12.5 L
V₂ = final volume of gas = ?
n₁ = initial moles of gas = 0.016 mole
n₂ = final moles of gas = 0.016-0.007 = 0.002 mole
V₁/n₁m= V₂/n₂
V₂= 1.56L
Avogadro's Law is in evidence whenever you blow up a balloon. The volume of the balloon increases as you add moles of gas to the balloon by blowing it up.
Learn more about Volume here:
brainly.com/question/5018408
#SPJ4
Ouestion: Which of the following can serve as evidence to support the claim that human consumption of water impacts earths system?
Answer & Explanation: Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise. (MS-ESS3-3), (MS-ESS3-4)
Hope this helps and comment down below if you need more information!
Fr0ggyLikeSMELLY
Answer:
yes it is ( From +3 to 0 )
Explanation:
If this is the balanced equation:
AlCl3 + 3Na ——> 3NaCl + Al
Al Cl 3Na Na Cl Al
+3 -3 0 +1 -1 0
C.) Ionic bond is formed between that...
Answer:
Gases are easily compressed. We can see evidence of this in Table 1 in Thermal Expansion of Solids and Liquids, where you will note that gases have the largest coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same β. This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.
The answer lies in the large separation of atoms and molecules in gases, compared to their sizes, as illustrated in Figure 2. Because atoms and molecules have large separations, forces between them can be ignored, except when they collide with each other during collisions. The motion of atoms and molecules (at temperatures well above the boiling temperature) is fast, such that the gas occupies all of the accessible volume and the expansion of gases is rapid. In contrast, in liquids and solids, atoms and molecules are closer together and are quite sensitive to the forces between them.