The molar solubility is 7.4×
M and the solubility is 7.4×
g/L .
Calculation ,
The dissociation of silver bromide is given as ,
→
+ 
S
- S S
Ksp = [
] [
] = [S] [ S ] = 
S = √ Ksp = √ 5. 5×
= 7.4×
The solubility =7.4×
g/L
The molar solubility is the solubility of one mole of the substance.
Since , one mole of
is dissociates and form one mole of each
and
ion . So, solubility is equal to molar solubility but unit is different.
Molar solubility = 7.4×
mol/L = 7.4×
M
To learn more about molar solubility ,
brainly.com/question/16243859
#SPJ4
The given reaction equation for photosynthesis whereby, in the presence of light energy from the Sun and chlorophyll, plants synthesize glucose from carbon dioxide and water. As water is present as a reactant, it doesn’t also appear on the ’products’ side of the equation. So:
Water + carbon dioxide > glucose + oxygen.
As glucose contains 6 carbon atoms, these must be obtained from 6 molecules of CO2. So, overall:
6CO2(g) + 6H2O(l) > C6H12O6(aq) + 6O2(g).
What is photosynthesis?
Photosynthesis is the process plants and other organisms use to convert light energy into chemical energy, which is later released through cellular respiration to power the activity of the organism.
Therefore, This is the equation for photosynthesis whereby, in the presence of light energy from the Sun and chlorophyll, plants synthesize glucose from carbon dioxide and water.
To learn more about photosynthesis refer the given link:-
brainly.com/question/26071939
#SPJ4
Answer: 1) "cohension" ;
2) "liquid" .
____________________________________________________________
Answer:
36.2 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 8.6 atm
- Initial temperature of the gas (T₁): 38°C
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final temperature of the gas (T₂): ?
Step 2: Convert T₁ to Kelvin
We will use the following expression.
K = °C +273.15
K = 38 °C +273.15 = 311 K
Step 3: Calculate T₂
We will use Gay Lussac's law.
P₁/T₁ = P₂/T₂
T₂ = P₂ × T₁/P₁
T₂ = 1.0 atm × 311 K/8.6 atm = 36.2 K