Answer:
i know you think that they are just related because kg has kilo but they are related because
Explanation:
1000g makes 1 g.You see how much there is a difference in the solution because how is one=one thousand,well that is all i can help you from here.bye panta
The symbol for the hydronium ion is H3O+.
An hydronium ion is usually formed when an acid is present in water. The hydronium ion is made up of three atoms of hydrogen and one atom of oxygen, thus an hydronium ion is a water molecule which has gained an extra positive hydrogen ion.
Answer:
The number before any molecular formula applies to the entire formula. So here you have five molecules of water with two hydrogen atoms and one oxygen atom per molecule. Thus you have ten hydrogen atoms and five oxygen atoms in total.
Answer:
The answer to your question is the letter C) 5648 kJ/mol
Explanation:
Data
C₁₂H₂₂O₁₁ + 12 O₂ ⇒ 12 CO₂ + 11 H₂O
H° C₁₂H₂₂O₁₁ = -2221.8 kJ/mol
H° O₂ = 0 kJ / mol
H° CO₂ = -393.5 kJ/mol
H° H₂O = -285.8 kJ/mol
Formula
ΔH° = ∑H° products - ∑H° reactants
Substitution
ΔH° = 12(-393.5) + 11(-285.8) - (-2221.8) - (0)
ΔH° = -4722 - 3143.8 + 2221.8
Result
ΔH° = -5644 kJ/mol
Answer: Option (b) and (d) are correct.
Explanation:
An equilibrium reaction is defined as the reaction in which rate of forward reaction equals rate of backward reaction.
A photosynthesis reaction is the reaction in which plants in the presence of sunlight, water, and carbon dioxide make their own food.
- The amount of carbon dioxide consumed will be equal to the rate of formation of oxygen into the atmosphere.
Hence, the statement rate of formation of
is equal to the rate of formation of
is true.
- Concentration of oxygen may remain constant but it will not decrease. Hence, the statement concentration of
will begin decreasing, is false.
- As both oxygen and carbon dioxide are present in an equilibrium reaction, So, their concentration will not change.
Hence, the statement concentrations of
and
will not change, is true.
- Concentration of carbon dioxide and oxygen will also depend on the limiting reagent. So, it is not necessary that the concentrations of
and
will be equal.
Some amount of carbon dioxide might escape out into the air.
Hence, the statement concentrations of
and
will be equal, is false.