V = displacement /time
= 3/3 = 1km/hr
Answer:

Explanation:
The reaction we need to calculate:

1) 

We need the ClO in the products side, so we use the inverse of this reaction:


2) 

Now we need to combine this two:


The enthalpy of reaction:


Answer:
0.51M
Explanation:
Given parameters:
Initial volume of NaBr = 340mL
Initial molarity = 1.5M
Final volume = 1000mL
Unknown:
Final molarity = ?
Solution;
This is a dilution problem whereas the concentration of a compound changes from one to another.
In this kind of problem, we must establish that the number of moles still remains the same.
number of moles initially before diluting = number of moles after dilution
Number of moles = Molarity x volume
Let us find the number of moles;
Number of moles = initial volume x initial molarity
Convert mL to dm³;
1000mL = 1dm³
340mL gives
= 0.34dm³
Number of moles = initial volume x initial molarity = 0.34 x 1.5 = 0.51moles
Now to find the new molarity/concentration;
Final molarity =
=
= 0.51M
We can see a massive drop in molarity this is due to dilution of the initial concentration.
Explanation:
Part A
Boiling point of HF is much higher as compared to the boiling point of HCl.
Reason:
The strongest inter molecular hydrogen bonding exist between HF molecules This is due to highly electronegative Fluorine atom.
Part B
The type of bonding present in the given compounds are:
1. Ice
The water molecules in ice are linked to each other through intermolecular hydrogen bonding due to the presence of electronegative oxygen atom that is attached to hydrogen atom.
2. Copper dioxide
In Copper dioxide, Copper and oxide ions are linked to each other via electrostatic force of attraction due to the presence of electronegative Oxygen atom and electropositive Cu atom.
Therefore, ionic bond is present in it.
3. Steel
In steel, metal and negatively charged electrons are linked to each other, thus giving rise to metallic bond between steel molecules.
4. Silicon elastomer
In silicon elastomer, Silicon atom is linked to other atom via covalent bonds due to sharing of electrons.
5. Tungsten
In the case of tungsten also, atoms are bonded to each other via metallic bond.
Answer:
31.24 kJ
Explanation:
- SiO₂(g) + 3C(s) → SiC(s) + 2CO(g) ΔH° = 624.7 kJ/mol
First we <u>convert 3.00 grams of SiO₂ to moles</u>, using its <em>molar mass</em>:
- 3.00 g SiO₂ ÷ 60.08 g/mol = 0.05 mol
Now we <u>calculate the heat absorbed</u>, using the <em>given ΔH°</em>:
If the complete reaction of 1 mol of SiO₂ absorbs 624.7 kJ, then with 0.05 mol:
- 0.05 mol * 624.7 kJ/mol = 31.24 kJ of heat would be absorbed.