'Ampere' is the unit of current. That's the rate at which
electrons travel in the circuit ... the number of electrons
every second. If you wanted the actual amount or number
of electrons, you'd need to know the length of time too.
It doesn't matter whether we're talking about a parallel or
series circuit.
True True False True False False True I hope I helped on the first few
Answer: Option D : is traveling rapidly but oscillating slowly.
Explanation:
ycarrier(x,t) is traveling rapidly but oscillating slowly.
-- As she lands on the air mattress, her momentum is (m v)
Momentum = (60 kg) (5 m/s down) = 300 kg-m/s down
-- As she leaves it after the bounce,
Momentum = (60 kg) (1 m/s up) = 60 kg-m/s up
-- The impulse (change in momentum) is
Change = (60 kg-m/s up) - (300 kg-m/s down)
Magnitude of the change = <em>360 km-m/s </em>
The direction of the change is <em>up /\ </em>.
Answer:
Person B has four times the power output of person A.