I believe it would be x because you are trying to find the width of the wave but i could be wrong
833.33 sec
5000m/6ms
Divide 5000 by 6 and you get your answer !!
Answer:
D. 21 ml
Explanation:
Since, the cylinder is marked and graduated in the intervals if 1 ml. Therefore, the values between two consecutive ml, such as between 30 ml and 31 ml can not be determined. Because, we do not have any scale in between the ml. So, the least count of this instrument is 1 ml. This graduated cylinder can give the answers to zero decimal places, accurately. And it can not determine any decimal value due to its graduating or the marking limitation. So, all the options given, contain a decimal value, except for the option D. In option D there is no decimal value, hence it is a correct answer.
D. <u>21 ml</u>
Answer:
v = 14.41 m/s
Explanation:
It is given that,
mass of the ball, m = 200 g = 0.2 kg
Height of the roof, h = 12 m
The ball is tossed 1.4 m above the ground, h' = 1.4 m
Let v is the minimum speed with which the ball is tossed. Using the conservation of energy to find it as :





v = 14.41 m/s
So, the minimum speed with which the ball is thrown straight up is 14.41 m/s. Hence, this is the required solution.