The temperature of the gas is 41.3 °C.
Answer:
The temperature of the gas is 41.3 °C.
Explanation:
So on combining the Boyle's and Charles law, we get the ideal law of gas that is PV=nRT. Here P is the pressure, V is the volume, n is the number of moles, R is gas constant and T is the temperature. The SI unit of pressure is atm. So we need to convert 1 Pa to 1 atm, that is 1 Pa = 9.86923×
atm. Thus, 171000 Pa = 1.6876 atm.
We know that the gas constant R = 0.0821 atmLMol–¹K-¹. Then the volume of the gas is given as 50 L and moles are given as 3.27 moles.
Then substituting all the values in ideal gas equation ,we get
1.6876×50=3.27×0.0821×T
Temperature = 
So the temperature is obtained to be 314.3 K. As 0°C = 273 K,
Then 314.3 K = 314.3-273 °C=41.3 °C.
Thus, the temperature is 41.3 °C.
Answer:

Explanation:
Total spectators = 5000
Counted by the groups of ten, So at last the result will be:
=> 5000/10 = 500
Significant figures in 500 are 3
Answer:
6.136 mm
Explanation:
given,
frequency emitted by the bat = 5.59 x 10⁴ Hz
speed of sound = 343 m/s
smallest insect bat can hear will be equal to the wavelength of the sound the bat make.



λ = 6.136 mm
so, the smallest size of insect that bat can hear is equal to 6.136 mm
The answer is C 8.87*10^4 m/s (it shouldn't be m/s^2 though as velocity is in m/s)
Since you know the acceleration is 12 m/s^2, the initial velocity is 2.39*10^4 m/s and the time (you have to convert to seconds) is 5400 seconds, then you can use the equation
v = vo + at
When you plug in the values you get
v = 2.39*10^4 + 5400*12 . so v = 8.87*10^4 m/s. C is your answer.