Fundamental States,
Non-classical States.
Solid,
Liquid,
Gas and
Plasma.
Answer:
v' = 1.5 m/s
Explanation:
given,
mass of the bullet, m = 10 g
initial speed of the bullet, v = 300 m/s
final speed of the bullet after collision, v' = 300/2 = 150 m/s
Mass of the block, M = 1 Kg
initial speed of the block, u = 0 m/s
velocity of the block after collision, u' = ?
using conservation of momentum
m v + Mu = m v' + M u'
0.01 x 300 + 0 = 0.01 x 150 + 1 x v'
v' = 0.01 x 150
v' = 1.5 m/s
Speed of the block after collision is equal to v' = 1.5 m/s
The relevant formula we can use in this case would be:
h = v0 t + 0.5 g t^2
where,
h = height or distance travelled
v0 = initial velocity = 0 since it was dropped
t = time = 1 seconds
g = 9.8 m/s^2
So calculating for height h:
h = 0 + 0.5 * 9.8 m/s^2 * (1 s)^2
<span>h = 4.9 meters</span>
<u>Answer</u>
B•Horizontal=11.49 m/s
Vertical=9.64 m/s
Using the concept of a trigonometric ratios,
sin θ = y/hypotenuse
where y is the vertical component.
sin 40 = y/15
y = 15 × sin 40
= 9.64 m/s
vertical component = 9.64 m/s
cos θ = x/hypotenuse
where x is the horizontal component
cos 40 = x/15
x = 15 × cos 15
=11.49
Horizontal component = 11.49 m/s
Given:
heat generated by John's cooling system,
= 45 W (1)
If ρ, A, and v corresponds to John's cooling system then let
be the variables for Mike's system then:



Formula use:
Heat generated, 
where,
= density
A = area
v = velocity
Solution:
for Mike's cooling system:
=
⇒
=
× A ×
= 4.513
A 
Using eqn (1) in the above eqn, we get:
= 4.513 × 45 = 203.09 W