Answer:
λ = 2.7608 x 10⁻⁷ m = 276.08 nm
Explanation:
The work function of a metallic surface is the minimum amount of photon energy required to release the photo-electrons from the surface of metal. The work function is given by the following formula:
Work Function = hc/λ
where,
Work Function = (4.5 eV)(1.6 x 10⁻¹⁹ J/1 eV) = 7.2 x 10⁻¹⁹ J
h = Plank's Constant = 6.626 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = longest wavelength capable of releasing electron.
Therefore,
7.2 x 10⁻¹⁹ J = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/λ
λ = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(7.2 x 10⁻¹⁹ J)
<u>λ = 2.7608 x 10⁻⁷ m = 276.08 nm</u>
We can calculate the acceleration of Cole due to friction using Newton's second law of motion:

where

is the frictional force (with a negative sign, since the force acts against the direction of motion) and m=100 kg is the mass of Cole and the sled. By rearranging the equation, we find

Now we can use the following formula to calculate the distance covered by Cole and the sled before stopping:

where

is the final speed of the sled

is the initial speed

is the distance covered
By rearranging the equation, we find d:
Answer:
46 dgres is the answer
Explanation:
<em>plz</em><em> </em><em>mark</em><em> </em><em>me</em><em> brainliest</em><em> plz</em><em> Plz</em>
Answer:
E) d/sqrt2
Explanation:
The initial electric force between the two charge is given by:

where
k is the Coulomb's constant
q1, q2 are the two charges
d is the separation between the two charges
We can also rewrite it as

So if we want to make the force F twice as strong,
F' = 2F
the new distance between the charges would be

so the correct option is E.
Answer:
to a warm front. Remember to include all data collected on warm fron … ... Remember to include all data collected on warm fronts in this activity to support your answer (examples: interaction of air masses, air pressure, cloud cover, temperature behind/ahead of front, wind direction, precipitation, etc. 1
Explanation: