1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
almond37 [142]
3 years ago
15

The correlation analysis assumes that the measurements have a bivariate normal distribution in the population. Select all of the

features that define a bivariate normal distribution.
A) A cloud of points that is funnel shaped (wider at one end than the other)
B) A relationship between X and Y that is not linear
C) The frequency distributions of X and Y separately are normal
D) Either X or Y has a decidedly skewed distribution
E) The presence of outliers Bell-shaped probability distribution in two dimensions rather than one
D) A relationship between X and Y that is linear
Mathematics
1 answer:
hoa [83]3 years ago
8 0

Answer:

Bruh i got correlation hw that i posted on here too and nobody helped lol.

Step-by-step explanation:

You might be interested in
If there are 12 girls and 23 boys,
kirza4 [7]

Answer:

12:23

12 to 23

12/23

Step-by-step explanation:

5 0
3 years ago
Find AB. Round to the nearest tenth if necessary.<br>​
shusha [124]

Answer:

I think the right answer would be 7

Step-by-step explanation:

We got-ta use the equation: CA * BA = DA²

CA = 15 + BA

DA² = 8² = 64

=> (15 + BA) BA = 64

Subtract 15 from each side:

BA(BA) = 49

BA² = 49

Now take the square root of each side

BA = 7

Hope this helps!

3 0
3 years ago
8.21 in a mixed number
vfiekz [6]
It's really simple!
 
as an improper fraction it would look like this:

when changing it to a mixed fraction:
we divide the numerator by the denominator and keep the whole number to the side and leave the remainder as the numerator

the mixed number will look like this:
8 21/100
I hope you found this helpful, and if so, please mark as braniliest, thanks XD
3 0
3 years ago
Ch statement is true about the graphs of the two lines y=-6 and x =
jarptica [38.1K]
The slope answer for this question is 46% rad
8 0
2 years ago
This problem asks for Taylor polynomials forf(x) = ln(1 +x) centered at= 0. Show Your work in an organized way.(a) Find the 4th,
stich3 [128]

Answer:

a) The 4th degree , 5th degree and sixth degree polynomials

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (1)= \frac{((-1)^3(3!))}{(1+x)^4}

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} =\frac{(-1)^4 (4!)}{(1+x)^5}

f^{V1} (x) = \frac{(-120))}{(1+x)^6} (1) = \frac{(-1)^5 5!}{(1+x)^6}

b)The nth degree Taylor polynomial for f(x) centered at x = 0, in expanded form.

log(1+x) = x - \frac{x^2}{2} +\frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}+\\..  (-1)^{n-1}\frac{x^n}{n} +..

Step-by-step explanation:

Given the polynomial function f(x) = log(1+x) …...(1) centered at x=0

      f(x) = log(1+x) ……(1)

using formula \frac{d}{dx} logx =\frac{1}{x}

Differentiating Equation(1) with respective to 'x' we get

f^{l} (x) = \frac{1}{1+x} (\frac{d}{dx}(1+x)

f^{l} (x) = \frac{1}{1+x} (1)  ….(2)

At x= 0

f^{l} (0) = \frac{1}{1+0} (1)= 1

using formula \frac{d}{dx} x^{n-1}  =nx^{n-1}

Again Differentiating Equation(2) with respective to 'x' we get

f^{l} (x) = \frac{-1}{(1+x)^2} (\frac{d}{dx}((1+x))

f^{ll} (x) = \frac{-1}{(1+x)^2} (1)    ….(3)

At x=0

f^{ll} (0) = \frac{-1}{(1+0)^2} (1)= -1

Again Differentiating Equation(3) with respective to 'x' we get

f^{lll} (x) = \frac{(-1)(-2)}{(1+x)^3} (\frac{d}{dx}((1+x))

f^{lll} (x) = \frac{(-1)(-2)}{(1+x)^3} (1)=  \frac{(-1)^2 (2)!}{(1+x)^3} ….(4)

At x=0

f^{lll} (0) = \frac{(-1)(-2)}{(1+0)^3} (1)

f^{lll} (0) = 2

Again Differentiating Equation(4) with respective to 'x' we get

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (\frac{d}{dx}((1+x))

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (1)= \frac{((-1)^3(3!))}{(1+x)^4} ....(5)

f^{lV} (0) = \frac{(2(-3))}{(1+0)^4}

f^{lV} (0) = -6

Again Differentiating Equation(5) with respective to 'x' we get

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} (\frac{d}{dx}((1+x))

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} =\frac{(-1)^4 (4!)}{(1+x)^5} .....(6)

At x=0

f^{V} (x) = 24

Again Differentiating Equation(6) with respective to 'x' we get

f^{V1} (x) = \frac{(2(-3)(-4)(-5))}{(1+x)^6} (\frac{d}{dx}((1+x))

f^{V1} (x) = \frac{(-120))}{(1+x)^6} (1) = \frac{(-1)^5 5!}{(1+x)^6}

and so on...

The nth term is

f^{n} (x) =  = \frac{(-1)^{n-1} (n-1)!}{(1+x)^n}

Step :-2

Taylors theorem expansion of f(x) is

f(x) = f(a) + \frac{x}{1!} f^{l}(x) +\frac{(x-a)^2}{2!}f^{ll}(x)+\frac{(x-a)^3}{3!}f^{lll}(x)+\frac{(x-a)^4}{4!}f^{lV}(x)+\frac{(x-a)^5}{5!}f^{V}(x)+\frac{(x-a)^6}{6!}f^{VI}(x)+...….. \frac{(x-a)^n}{n!}f^{n}(x)

At x=a =0

f(x) = f(0) + \frac{x}{1!} f^{l}(0) +\frac{(x)^2}{2!}f^{ll}(0)+\frac{(x)^3}{3!}f^{lll}(0)+\frac{(x)^4}{4!}f^{lV}(0)+\frac{(x)^5}{5!}f^{V}(0)+\frac{(x)^6}{6!}f^{VI}(0)+...….. \frac{(x-0)^n}{n!}f^{n}(0)

Substitute  all values , we get

f(x) = f(0) + \frac{x}{1!} (1) +\frac{(x)^2}{2!}(-1)+\frac{(x)^3}{3!}(2)+\frac{(x)^4}{4!}(-6)+\frac{(x)^5}{5!}(24)+\frac{(x)^6}{6!}(-120)+...….. \frac{(x-0)^n}{n!}f^{n}(0)

On simplification we get

log(1+x) = x - \frac{x^2}{2} +\frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}+\\..  (-1)^{n-1}\frac{x^n}{n} +..

4 0
3 years ago
Other questions:
  • A basic calculator costs four pounds. How much will sixty calculators cost?
    12·2 answers
  • One ninth of the height of an iceberg was above the surface of the water. The iceberg
    5·1 answer
  • Write 6 1/6 as an improper fraction
    9·2 answers
  • What is 4/56 plus 356 in fractions
    12·1 answer
  • Which is heavier a pound of bricks or a pound of feathers?
    13·2 answers
  • A group of students were surveyed to find out if they like building snowmen or skiing as a winter activity. The results of the s
    15·2 answers
  • Look at this diagram:
    5·1 answer
  • Which of the following inequalities can be used to represent a number x that is greater than -5 and less than 3?
    13·1 answer
  • PLZZ!!! ANSWER!!! ASAP!!!
    7·1 answer
  • Plz I need help this is due at 7:10 and I wasn’t paying attention in class.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!