The only thing we need to here to find who is correct is evaluate the function

at

. To do that we are going to replace

with

in the function:





We can conclude that Lynn is correct.

is indeed 14.
The answer would be D: The mean and median both stay the same.
Answer:
The value of f(z) is not constant in any neighbourhood of D. The proof is as explained in the explaination.
Step-by-step explanation:
Given
For any given function f(z), it is analytic and not constant throughout a domain D
To Prove
The function f(z) is non-constant constant in the neighbourhood lying in D.
Proof
1-Assume that the value of f(z) is analytic and has a constant throughout some neighbourhood in D which is ω₀
2-Now consider another function F₁(z) where
F₁(z)=f(z)-ω₀
3-As f(z) is analytic throughout D and F₁(z) is a difference of an analytic function and a constant so it is also an analytic function.
4-Assume that the value of F₁(z) is 0 throughout the domain D thus F₁(z)≡0 in domain D.
5-Replacing value of F₁(z) in the above gives:
F₁(z)≡0 in domain D
f(z)-ω₀≡0 in domain D
f(z)≡0+ω₀ in domain D
f(z)≡ω₀ in domain D
So this indicates that the value of f(z) for all values in domain D is a constant ω₀.
This contradicts with the initial given statement, where the value of f(z) is not constant thus the assumption is wrong and the value of f(z) is not constant in any neighbourhood of D.
Answer:
The x-coordinate of another point is zero
Step-by-step explanation:
step 1
Find the slope between the two given points
The formula to calculate the slope between two points is equal to
we have
substitute in the formula
Simplify
step 2
Find the x-coordinate of another point
we have
(x,-3)
we know that
If the other point is on the line, then the slope between the other point and any of the other two points must be the same
so
Find the slope between the points
Remember that
substitute in the formula
the denominators must be the same


therefore
The x-coordinate of another point is zero