Answer:
Hey hi
Explanation:
Can you pls tell me which language is this.... Pls really sorry... I wanna help you
The mass of plutonium that will remain after 1000 years if the initial amount is 5 g when the half life of plutonium-239 (239pu, pu-239) is 24,100 years is 2.5 g
The equation is Mr=Mi(1/2)^n
where n is the number of half-lives
Mr is the mass remaining after n half lives
Mi is the initial mass of the sample
To find n, the number of half-lives, divide the total time 1000 by the time of the half-life(24,100)
n=1000/24100=0.0414
So Mr=5x(1/2)^1=2.5 g
The mass remaining is 2.5 g
- The half life is the time in which the concentration of a substance decreases to half of the initial value.
Learn more about half life at:
brainly.com/question/24710827
#SPJ4
Answer:
E₁ ≅ 28.96 kJ/mol
Explanation:
Given that:
The activation energy of a certain uncatalyzed biochemical reaction is 50.0 kJ/mol,
Let the activation energy for a catalyzed biochemical reaction = E₁
E₁ = ??? (unknown)
Let the activation energy for an uncatalyzed biochemical reaction = E₂
E₂ = 50.0 kJ/mol
= 50,000 J/mol
Temperature (T) = 37°C
= (37+273.15)K
= 310.15K
Rate constant (R) = 8.314 J/mol/k
Also, let the constant rate for the catalyzed biochemical reaction = K₁
let the constant rate for the uncatalyzed biochemical reaction = K₂
If the rate constant for the reaction increases by a factor of 3.50 × 10³ as compared with the uncatalyzed reaction, That implies that:
K₁ = 3.50 × 10³
K₂ = 1
Now, to calculate the activation energy for the catalyzed reaction going by the following above parameter;
we can use the formula for Arrhenius equation;

If
&





E₁ ≅ 28.96 kJ/mol
∴ the activation energy for a catalyzed biochemical reaction (E₁) = 28.96 kJ/mol
We can use the atomic model to demonstrate the ways in which scientists
refine and build off each other's findings because of the fact that once
this model was created, it brought with it other models and inventions,
such as the periodic table and other theories about our known universe.
A green plant has chemical energy