Answer:
(a) Slightly greater than 20.0 °C
(b) 
Explanation:
Hello,
In this case, since we are talking about the equilibrium temperature that will be reached when the copper, chromium and water samples get in contact, the following equation is useful to describe such situation:

Thus, in terms of masses, heat capacities and temperatures we consider the final temperature as the unknown:
In such a way, by knowing that the heat capacities of copper and chromium are 0.386 and 0.45 J/(g°C) respectively, by solving for the equilibrium temperature one has:


Hence, the resulting temperature of water turns out slightly greater than 20.0 °C.
Best regards.
Answer:
At equilibrium:
[H2] = 0.005 M
[Br2] = 0.105 M
[HBr] = 0.189 M
Explanation:
H2(g) + Br2(g) ⇄ 2HBr
an "x" value will be used from reactant to produced "2x"
so at equilibrium:
[H2] = 0.1 - x
[Br2] = 0.2 - x
[HBr] = 2x
we know that Kc=[HBr]²/[H2][Br2]
Thus 62.5 = (2x)²/(0.1-x)(0.2-x)
this generate a quadratic equation: 58.5x² - 18.75x + 1.25 = 0
the x₁ = 0.23 x₂ = 0.09457
we pick 0.09457 because the two reactants can not make more than what they have. x₁ is higher than both initial reactant concentration
Then we substitute the "x₂" value at equilibrium:
[H2] = 0.1-0.09457 = 0.005 M
[Br2] = 0.2-0.09457 = 0.105 M
[HBr] = 2*0.09457 = 0.189 M
Answer:
is what a model answer key
Answer:
The answer is TRUE!!!
Explanation:
Please mark brainliest... btw try online school... you can do the easiest thing such as: learning photography, basic drawling, digital art and design, web design, painting for beginers, fitness, etc.