1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amm1812
4 years ago
9

Despite a very strong wind, a tennis player

Physics
1 answer:
Gnoma [55]4 years ago
6 0

Answer:

Option 5. 1 and 3

Solution:

The only forces acting on the tennis ball after it has left contact with the racquet and the instant before it touches the ground are the force of gravity in the downward direction and the force by the air exerted on the ball.

The ball after it left follows the path of trajectory and as it moves forward in the horizontal direction the force of the air acts on it.

In the whole projectile motion of the ball, the acceleration due to gravity acts on the ball thus the force of gravity acts on the ball in the downward direction  before it hits the ground.

You might be interested in
A woman can row a boat at 5.60 km/h in still water. (a) If she is crossing a river where the current is 2.80 km/h, in what direc
katrin2010 [14]

Answer:

a) θ=210°, b) t=1.155hr, c) t=1.333hr, d) t=1.333hr, e) θ=180° (straight across), f) t=1hr.

Explanation:

So, the very first thing we nee to do when solving this problem is draw a diagram that represents it. In the attached picture I show a diagram for each part of this problem.

part a)

So, for her to move in a direction directly opposite her starting point, the x-component of her velocity must be de same as the velocity of the river in the opposite direction. We can use this fact to find the angle we need. If we analize the triangle I drew in the diagram, we can ses that:

cos \theta = \frac {V_{river}}{V_{boat}}

When solving for theta, we get that:

\theta =cos^{-1} ( \frac {V_{river}}{V_{boat}})

so now we can substitute the corresponding values:

\theta =cos^{-1} ( \frac {2.80km/hr}{5.60km/hr}})

Which yields:

\theta = 60^{o}

but we are measuring the angle relative to the line perpendicular to the river, positive if down the river. So we need to subtract the angle from 270° so we get:

θ=270°-60°=210°

part b)

for part b, we need to find what the y-component for the velocity of the boat is for an angle of 210° as shown in the problem, so we get that:

V_{y}=5.60km/hr*cos(210^{o})

V_{y}=-4.85km/hr

The woman will head in a negative 5.60km distance from one side to the other, so we get that the time it takes her to go to the other side of the river is:

t=\frac{y}{V_{y}}

t=\frac{5.60km}{4.85km/hr}=1.155hr

part c)

In order to find the time it takes her to travel 2.80km down and up the river, we need to find the velocities she will have in both directions. First, down stream:

V_{ds}=V_{river}+V{boat}

V_{ds}=2.80km/hr+5.60km/hr=8.40km/hr

and now up stream:

V_{us}=V_{boat}-V{river}

V_{us}=5.60km/hr-2.80km/hr=2.80km/hr

Once we got these two velocities we will now need to find the time to take each trip:

time down stream:

t_{ds}=\frac{x}{v_{ds}}

t_{ds}=\frac{2.80km}{8.40km/hr}=0.333hr

and the time up stream:

t_{us}=\frac{x}{v_{us}}

t_{us}=\frac{2.80km}{2,80km/hr}=1hr

so the total time will be:

t_{ds}+t_{us}=0.333hr+1hr=1.333hr

d) the time it takes the boat to go upstream and then downstream for the same distance is the same as the time we got on part c, since both times will be the same but they will come in different order, but their sum will be just the same:

t=1.333hr

e) For her to cross the river faster, she must row in a 180° direction (this is in a direction straight accross the river) that way she will use all her velocity to move across the river. (Even though she will move a certain distance horizontally and will not reach a point opposite to the starting point.)

f) In order to find the time it takes her to get to the other side, we need to divide the distance into the velocity of the boat.

t=\frac{d}{v_{boat}}

t=\frac{5.60km}{5.60km/hr}

so

t= 1hr

4 0
4 years ago
Read 2 more answers
Consider Newton's Law of Universal Gravitation: FG= G (m1 m2)/d2 .
bixtya [17]

Answer:

C

Mass is directly proportional to the Force of Gravity. If Mass increases, then the Force of Gravity increases; however, Distance is indirectly (or inversely) proportional to the Force of Gravity. If Distance increases, then the Force of Gravity decreases.

Explanation:

The formula for the force of gravity between two objects is

F=G\frac{m_1 m_2}{d^2}

where

G is the gravitational constant

m1, m2 are the masses of the two objects

d is the separation between the two objects

We notice the  following:

- F is directly proportional to the masses, F\propto m_1, m_2. This means that if one of the masses increases, then the force between them, F, increases in a proportional way

- F is inversely proportional to the square of the distance, F\propto \frac{1}{d^2}. This means that if the distance between the two objects is increased, the force between them will decrease, and vice-versa.

So, the correct answer is

C

Mass is directly proportional to the Force of Gravity. If Mass increases, then the Force of Gravity increases; however, Distance is indirectly (or inversely) proportional to the Force of Gravity. If Distance increases, then the Force of Gravity decreases.

7 0
3 years ago
Read 2 more answers
The aorta is the main artery from the heart. a typical aorta has an inside diameter of 1.8 cm and carries blood at speeds of up
defon

Answer:

Explanation:

Volume per unit time flowing   will be conserved

a₁v₁  = a₂ v₂

π r₁² x v₁ = π r₂² x v₂

(0.9 x 10⁻²)² x .35 = ( .45 x 10⁻² )² x v₂

v₂ = 1.4 m / s

3 0
3 years ago
what is the name of the tool that allows you to copy two or more shapes into a single part? when working with 3D
Anna [14]

Answer:

Modeling tool or Align tool. it depends what type of sandbox platform you use

Explanation:

1

8 0
3 years ago
Light waves from the sun can travel trough outer space and reach the earth
konstantin123 [22]

Answer:

this is true

Explanation:

7 0
3 years ago
Other questions:
  • A wheel has a radius of 5.9 m. How far (path length) does a point on the circumference travel if the wheel is rotated through an
    10·1 answer
  • Which phenomenon can only be explained by assuming that light is quantized
    8·1 answer
  • A 65 Kg skier starts at rest at the top of a 150 m long hill that has an incline of 28 degrees. How fast will she be going at th
    13·1 answer
  • Airborne objects tend to curve to the right
    14·2 answers
  • A torque of 12 N*m is applied to a solid uniform disk of radius 0.50 m. If the disk accelerates at 2.6 rad/s^2 what is the mass
    12·1 answer
  • A person hears the echo of his own voice from a distant hill after 2 seconds. How far away is the person from the hill, if the s
    14·1 answer
  • A 2.0 kg pendulum has an initial total energy of 20 J. Calculate the energy lost as heat if the pendulum is 0.10 m high and is t
    11·1 answer
  • Define the term energy density of a body under strain​
    7·1 answer
  • What I didn't even cross 1000 , how it can be possible...​
    15·1 answer
  • Both physical and chemical changes are accompanied by a change in the total energy of the system, which is divided into two broa
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!