Unusual precipitation patterns
Answer:
the distance that the object is raised above its initial position is 5.625 m.
Explanation:
Given;
applied effort, E = 15 N
load lifted by the ideal pulley system, L = 16 N
distance moved by the effort, d₁ = 6 m
let the distance moved by the object = d₂
For an ideal machine, the mechanical advantage is equal to the velocity ratio of the machine.
M.A = V.R

Therefore, the distance that the object is raised above its initial position is 5.625 m.
Answer:
Explanation:
wavelength, λ = 3.4 m
wavelength, λ' = 3.3 m
Speed, v = 340 m/s
f = v / λ = 340 / 3.4 = 100 Hz
f' = v / λ' = 340 / 3.3 = 103.03 Hz
Frequency of beat, n = f' - f = 103.03 - 100 = 3.03 Hz
<h2>The voltmeter reading will be 35.7 volt </h2>
Explanation:
The resistor 1000 ohm and 4000 ohm are connected in parallel .
Their combined resistance is supposed R₁
Thus
=
+
or R₁ = 800 ohm
Therefore the total resistance in circuit is = 2000 + 800 = 2800 ohm
Because these are in series .
We can find current flowing through the circuit I =
=
= 
here R is total resistance .
The potential difference across 1000 ohm =
x 1000 = 35.7 volt
Thus voltmeter reading will be 35.7 volt