By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
<h3>How to determine the maximum height of the ball</h3>
Herein we have a <em>quadratic</em> equation that models the height of a ball in time and the <em>maximum</em> height represents the vertex of the parabola, hence we must use the <em>quadratic</em> formula for the following expression:
- 4.8 · t² + 19.9 · t + (55.3 - h) = 0
The height of the ball is a maximum when the discriminant is equal to zero:
19.9² - 4 · (- 4.8) · (55.3 - h) = 0
396.01 + 19.2 · (55.3 - h) = 0
19.2 · (55.3 - h) = -396.01
55.3 - h = -20.626
h = 55.3 + 20.626
h = 75.926 m
By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
To learn more on quadratic equations: brainly.com/question/17177510
#SPJ1
Answer:
The answer is A and D. I just got the the same question on edge 2020
Answer:
Samuel has $336 and Zander has $56
Step-by-step explanation:
Samuel = 6x because he has 6 times Zander
Zander = x
Together they have 392
6x + x = 392
7x = 392
Divide both sides by 7
x = 56
Samuel = 6 x 56 = 336
Zander = 56
336 + 56 = 392
For this case we have the following inequality:
2 ≥ 4 - v
The first thing we must do in this case is to clear the value of v.
We have then:
v ≥ 4 - 2
v ≥ 2
Therefore, the solution set is given by:
[2, inf)
Answer:
See attached image.