Answer:
A job hazard analysis is a technique that focuses on job tasks as a way to identify hazards before they occur. It focuses on the relationship between the worker, the task, the tools, and the work environment. After uncontrolled hazards are identified, take action to eliminate them or reduce risk.
Answer:
c. V2 equals V1
Explanation:
We can answer this question by using the continuity equation, which states that:
(1)
where
A1 is the cross-sectional area in the first section of the pipe
A2 is the cross-sectional area in the second section of the pipe
v1 is the velocity of the fluid in the first section of the pipe
v2 is the velocity of the fluid in the second section of the pipe
In this problem, we are told that the pipe has a uniform cross sectional area, so:
A1 = A2
As a consequence, according to eq.(1), this means that
v1 = v2
so, the velocity of the fluid in the pipe does not change.
3-SAT ≤p TSP
If P ¹ NP, then no NP-complete problem can be solved in polynomial time.
both the statements are true.
<u>Explanation:</u>
- 3-SAT ≤p TSP due to any complete problem of NP to other problem by exits of reductions.
- If P ¹ NP, then 3-SAT ≤p 2-SAT are the polynomial time algorithm are not for 3-SAT. In P, 2-SAT is found, 3- SAT polynomial time algorithm implies the exit of reductions. 3 SAT does not have polynomial time algorithm when P≠NP.
- If P ¹ NP, then no NP-complete problem can be solved in polynomial time. because for the NP complete problem individually gets the polynomial time algorithm for the others. It may be in P for all the problems, the implication of latter is P≠NP.
Radio waves are radiated by charged particles when they are accelerated. They are produced artificially by time-varying electric currents, consisting of electrons flowing back and forth in a specially-shaped metal conductor called an antenna. ... Radio waves are received by another antenna attached to a radio receiver.
Answer:
T₂ =93.77 °C
Explanation:
Initial temperature ,T₁ =27°C= 273 +27 = 300 K
We know that
Absolute pressure = Gauge pressure + Atmospheric pressure
Initial pressure ,P₁ = 300+1=301 kPa
Final pressure ,P₂= 367+1 = 368 kPa
Lets take temperature=T₂
We know that ,If the volume of the gas is constant ,then we can say that
Now by putting the values in the above equation we get
The temperature in °C
T₂ = 366.77 - 273 °C
T₂ =93.77 °C