Explanation:
Concentration overpotential, ηc,
I hope it helps you
Answer: 383.22K
Explanation:
L = 3m, w = 1.5m
Area A = 3 x 1.5 = 4.5m2
Q' = 750W/m2 (heat from sun) ,
& = 0.87
Q = &Q' = 0. 87x750 = 652.5W/m2
E = QA = 652.5 x 4.5 = 2936.25W
T(sur) = 300K, T(panel) = ?
Using E = §€A(T^4(panel) - T^4(sur))
§ = Stefan constant = 5.7x10^-8
€ = emmisivity = 0.85
2936.25 = 5.7x10^-8 x 0.85 x 4.5 x (T^4(panel) - 300^4)
T(panel) = 383.22K
See image for further details.
Answer:
<em>Object-oriented</em>
Explanation:
<em>Object Oriented programming</em> <em>(OOP)</em> is a specific way of programming, where the code is organized in units called classes, from which objects are created that are related to each other to achieve the objectives of the applications. Object-oriented programming took over as the dominant programming style in the mid-1980s, largely due to the influence of C ++. Its dominance was consolidated thanks to the rise of graphical user interfaces, for which object-oriented programming is particularly well suited. Its most important characteristics are the following:
Answer:
308 acre-ft of water
Explanation:
Given:
Area of the watershed = 22 square miles
Depth of Rainfall = 0.75 in =
=0.0625 ft
Percentage rainfall falling in reservoir as runoff = 35%
Now,
1 square mile = 640 acre
Thus,
22 square miles = 22 × 640 = 14,080 acres
Thus,
The total volume of rainfall = Area of watershed × Depth of the rainfall
or
The total volume of rainfall = 14,080 acres × 0.0625 ft = 880 acre-ft
also,
only 35% of the total rainfall is contributing as runoff
thus,
Runoff = 0.35 × 880 acre-ft = 308 acre-ft of water
Solution :
Given :
k = 0.5 per day


Volume, V 
Now, input rate = output rate + KCV ------------- (1)
Input rate 


The output rate 
= ( 40 + 0.5 ) x C x 1000

Decay rate = KCV
∴
= 1.16 C mg/s
Substituting all values in (1)

C = 4.93 mg/L