Answer:
1028.1184 Ohms
Explanation:
<u>Given the following data;</u>
- Initial resistance, Ro = 976 Ohms
- Initial temperature, T1 = 0°C
- Final temperature, T2 = 89°C
Assuming the temperature coefficient of resistance for carbon at 0°C is equal to 0.0006 per degree Celsius.
To find determine its new resistance, we would use the mathematical expression for linear resistivity;

Substituting into the equation, we have;




Given acceleration a = 5-3t, and its velocity is 7 at time t = 2, the value of s2 - s1 = 7
<h3>How to solve for the value of s2 - s1</h3>
We have
= 


v2 = 5x2 - 3x2 + c
= 10-6+c
= 4+c

S2 - S1

= 6 + 6+c - 2+3+c
12+c-5+c = 0
7 = c
Read more on acceleration here: brainly.com/question/605631
Answer:
Given,
Temperature;
T = 393;;K
Convert to Celcius;
T = (393-273) degrees
T = 120°C
Using Table A-4 (Saturated water - Temperature table), at T = 120 C;
vf = 0.001060 m³/kg
vg = 0.89133 m³/kg
Quality is given as;
75% = 0.75
Specific volume is given as;
v = vf + x (vg - vf) = 0.001060 + 0.75(0.89133 _ 0.001060)
v= 0.66876 m³/kg
We know;
v = V/m
0.66876 = 100/m
m = 149.53 kg
Answer:
γ
=0.01, P=248 kN
Explanation:
Given Data:
displacement = 2mm ;
height = 200mm ;
l = 400mm ;
w = 100 ;
G = 620 MPa = 620 N//mm²; 1MPa = 1N//mm²
a. Average Shear Strain:
The average shear strain can be determined by dividing the total displacement of plate by height
γ
= displacement / total height
= 2/200 = 0.01
b. Force P on upper plate:
Now, as we know that force per unit area equals to stress
τ = P/A
Also, τ = Gγ
By comapring both equations, we get
P/A = Gγ
------------ eq(1)
First we need to calculate total area,
A = l*w = 400 * 100= 4*10^4mm²
By putting the values in equation 1, we get
P/40000 = 620 * 0.01
P = 248000 N or 2.48 *10^5 N or 248 kN