Answer:
the crown is false densty= 12556kg/m^3[/tex]
Explanation:
Hello! The first step to solve this problem is to find the mass of the crown, this is found using the weight of the crown in the air by means of the equation for the weight.
W=mg
W=weight(N)=31.4N
M=Mass
g=gravity=9.81m/S^2
solving for M
m=W/g
The second step is find the volume of crown remembering that when an object is weighed in the water the result is the subtraction between the weight of the object and the buoyant force of the water which is the product of the volume of the crown by gravity by density of water
Where
F=weight in water=28.9N
m=mass of crown=3.2kg
g=gravity=9.81m/S^2
α=density of water=1000kg/m^3
V= crown´s volume
solving for V
finally, we remember that the density is equal to the index between mass and volume
To determine the density of the crown without using the weight in the water and with a bucket we can use the following steps.
1.weigh the crown in the air and find the mass
2. put water in a cylindrical bucket and measure its height with a ruler.
3. Put the crown in the bucket and measure the new water level with a ruler.
4. Subtract the heights, and find the volume of a cylinder knowing the difference in heights and the diameter of the bucket, in order to determine the volume of the crown.
5. find density by dividing mass by volume
Answer:
A key element is powering economies with clean energy, replacing polluting coal - and gas and oil-fired power stations - with renewable energy sources, such as wind or solar farms. This would dramatically reduce carbon emissions. Plus, renewable energy is now not only cleaner, but often cheaper than fossil fuels
Explanation:
here is your answer if you like my answer please follow
Answer:
System integration can be defined as the progressive linking and testing of system components to merge their functional and technical characteristics into a comprehensive interoperable system.
Explanation:
....
Answer: Because if something goes wrong while you are flying it it will crash
Explanation:
Answer:
flow ( m ) = 4.852 kg/s
Explanation:
Given:
- Inlet of Turbine
P_1 = 10 MPa
T_1 = 500 C
- Outlet of Turbine
P_2 = 10 KPa
x = 0.9
- Power output of Turbine W_out = 5 MW
Find:
Determine the mass ow rate required
Solution:
- Use steam Table A.4 to determine specific enthalpy for inlet conditions:
P_1 = 10 MPa
T_1 = 500 C ---------- > h_1 = 3375.1 KJ/kg
- Use steam Table A.6 to determine specific enthalpy for outlet conditions:
P_2 = 10 KPa -------------> h_f = 191.81 KJ/kg
x = 0.9 -------------> h_fg = 2392.1 KJ/kg
h_2 = h_f + x*h_fg
h_2 = 191.81 + 0.9*2392.1 = 2344.7 KJ/kg
- The work produced by the turbine W_out is given by first Law of thermodynamics:
W_out = flow(m) * ( h_1 - h_2 )
flow ( m ) = W_out / ( h_1 - h_2 )
- Plug in values:
flow ( m ) = 5*10^3 / ( 3375.1 - 2344.7 )
flow ( m ) = 4.852 kg/s