Answer:
Depth of field = 347.619 nm
Explanation:
wavelenght = 365nm
N.A =0.63
k1= 0.6
so we have that the resolution limit is:
R=k1*A
R=0.6*365
R=219 nm
and the Depth of field needed for the best resolution is:
DoF = Resolution / N.A.
DoF= R/N.A
DoF= 219/0.63
DoF= 347.619 nm
Answer:
Normal force = 0.326N
Explanation:
Given that:
mass released from rest at C = 3.7 g = 3.7 × 10⁻³ kg
height of the mass = 1.1 m
radius = 0.2 m
acceleration due to gravity = 9.8 m/s²
We are to determine the normal force pressing on the track at A.
To to that;
Let consider the conservation of energy relation; which says:
mgh = mgr + 1/2 mv²
gh = gr + 1/2 v²
gh - gr = 1/2v²
g(h-r) = 1/2v²
v² = 2g(h-r)
However; the normal force will result to a centripetal force; as such, using the relation
N =mv²/r
replacing the value for v² = 2g(h-r) in the above relation; we have:
Normal force = 2mg(h-r)/r
Normal force = 2 × 3.7 × 10⁻³ × 9.8 ( 1.1 - 0.2 )/ 0.2
Normal force = 0.065268/0.2
Normal force = 0.32634 N
Normal force = 0.326N
Answer:
Tension in cable BE= 196.2 N
Reactions A and D both are 73.575 N
Explanation:
The free body diagram is as attached sketch. At equilibrium, sum of forces along y axis will be 0 hence
hence

Therefore, tension in the cable, 
Taking moments about point A, with clockwise moments as positive while anticlockwise moments as negative then



Similarly,


Therefore, both reactions at A and D are 73.575 N
Answer:
Profile is a graphical representation of velocity distribution