Answer:
h_f = 15 ft, so option A is correct
Explanation:
The formula for head loss is given by;
h_f = [10.44•L•Q^(1.85)]/(C^(1.85))•D^(4.8655))
Where;
h_f is head loss due to friction in ft
L is length of pipe in ft
Q is flow rate of water in gpm
C is hazen Williams constant
D is diameter of pipe in inches
We are given;
L = 1,800 ft
Q = 600 gpm
C = 120
D = 8 inches
So, plugging in these values into the equation, we have;
h_f = [10.44*1800*600^(1.85)]/(120^(1.85))*8^(4.8655))
h_f = 14.896 ft.
So, h_f is approximately 15 ft
Answer:
Math and Computer Skills. A qualified engineer should be good at math, at least through the level of calculus and trigonometry, and understand the importance of following the data when making design decisions.
Organization and Attention to Detail.
Curiosity.
Creativity.
Critical Thinking.
Intuition.
Explanation:
Answer:
c = 18.0569 mm
Explanation:
Strategy
We will find required diameter based on angle of twist and based on shearing stress. The larger value will govern.
Given Data
Applied Torque
T = 750 N.m
Length of shaft
L = 1.2 m
Modulus of Rigidity
G = 77.2 GPa
Allowable Stress
г = 90 MPa
Maximum Angle of twist
∅=4°
∅=4*
/180
∅=69.813 *10^-3 rad
Required Diameter based on angle of twist
∅=TL/GJ
∅=TL/G*
/2*c^4
∅=2TL/G*
*c^4
c=
∅
c=18.0869 *10^-3 rad
Required Diameter based on shearing stress
г = T/J*c
г = [T/(J*
/2*c^4)]*c
г =[2T/(J*
*c^4)]*c
c=17.441*10^-3 rad
Minimum Radius Required
We will use larger of the two values
c= 18.0569 x 10^-3 m
c = 18.0569 mm
Answer:
hello some parts of your question is missing attached below is the missing part ( the required fig and table )
answer : The solar collector surface area = 7133 m^2
Explanation:
Given data :
Rate of energy input to the collectors from solar radiation = 0.3 kW/m^2
percentage of solar power absorbed by refrigerant = 60%
Determine the solar collector surface area
The solar collector surface area = 7133 m^2
attached below is a detailed solution of the problem
I’m crying looking at that.