Answer:
From this in-depth examination we aimed to draw out some of the key ... closely their business case and employ model makers to create a 3D prototype.
Explanation:
Answer:
h_f = 15 ft, so option A is correct
Explanation:
The formula for head loss is given by;
h_f = [10.44•L•Q^(1.85)]/(C^(1.85))•D^(4.8655))
Where;
h_f is head loss due to friction in ft
L is length of pipe in ft
Q is flow rate of water in gpm
C is hazen Williams constant
D is diameter of pipe in inches
We are given;
L = 1,800 ft
Q = 600 gpm
C = 120
D = 8 inches
So, plugging in these values into the equation, we have;
h_f = [10.44*1800*600^(1.85)]/(120^(1.85))*8^(4.8655))
h_f = 14.896 ft.
So, h_f is approximately 15 ft
Answer:
The problem is that the pumps would consume more energy than the generators would produce.
Explanation:
Water has a potential energy associated with the height it is at. The higher it is, the higher the potential energy. When water flows down into the turbines that energy is converted to kinetic energy and then into electricity.
A pump uses electricity to add energy to the water to send it to a higher potential energy state.
Ideally no net energy woul be hgenerate or lost, because the generators would release the potential energy and pumps would store it again in the water. However the systems are not ideal, everything has an efficiency and losses. The losses would accumulate and the generator would be generating less energy than the pumps consume, so that system wastes energy.
What should be done is closing the floodgates to keep the water up in the dam at night producing only the power that is needed and releasing more water during the day.
The correct answer is; Stability and reactivity.
Further Explanation:
The stability and reactivity section of the SDS sheets is where to check for the possibility of hazardous reactions for the chemicals. This also lists the chemical stability of each chemical that people may be using. This can be found in section 10 of the OSHA Quick Card.
The SDS sheets has 16 sections for employees to use. Since 2015, the sections can be found in uniform format for easier and faster ways to find the section needed. The 16 sections for the SDS sheets are:
- Identification
- Hazard(s) identification
- Composition/information on ingredients
- First-aid measures
- First-aid measures
- First-aid measures
- Handling and storage
- Exposure controls/personal protection
- Physical and chemical properties
- Stability and reactivity
- Toxicological information
- Ecological information
- Disposal considerations
- Transport information
- Regulatory information
- Other information
Learn more about SDS sheets at brainly.com/question/9753408
#LearnwithBrainly
Answer:
D. N= 11. 22 rad/s (CW)
Explanation:
Given that
Form factor R = 8
Speed of sun gear = 5 rad/s (CW)
Speed of ring gear = 12 rad/s (CW)
Lets take speed of carrier gear is N
From Algebraic method ,the relationship between speed and form factor given as follows

here negative sign means that ring and sun gear rotates in opposite direction
Lets take CW as positive and ACW as negative.
Now by putting the values


N= 11. 22 rad/s (CW)
So the speed of carrier gear is 11.22 rad/s clockwise.