Answer:
I think it is the last one.
Explanation:
I am not sure because i am stuck on this one, too.
Kinetic energy lost in collision is 10 J.
<u>Explanation:</u>
Given,
Mass,
= 4 kg
Speed,
= 5 m/s
= 1 kg
= 0
Speed after collision = 4 m/s
Kinetic energy lost, K×E = ?
During collision, momentum is conserved.
Before collision, the kinetic energy is

By plugging in the values we get,

K×E = 50 J
Therefore, kinetic energy before collision is 50 J
Kinetic energy after collision:


Since,
Initial Kinetic energy = Final kinetic energy
50 J = 40 J + K×E(lost)
K×E(lost) = 50 J - 40 J
K×E(lost) = 10 J
Therefore, kinetic energy lost in collision is 10 J.
Answer:
T = 0.225 s
Explanation:
The speed of a projectile at the highest point of its motion is the horizontal speed of the projectile. Considering the horizontal motion with negligible air resistance, we can use the following formula:

where,
T = Total time of ball in air = ?
R = Horizontal distance covered = 40 m
= horizontal speed = 9 m/s
Therefore,

<u>T = 0.225 s</u>
Answer:

Explanation:
Two identical bodies are sliding toward each other on a frictionless surface.
Initial speed of body 1, m₁ = 1 m/s
Initial speed of body 2, m₂ = 2 m/s
They collide and stick.
We need to find the speed of the combined mass. Let V is the speed of the combined mass.
Using the conservation of momentum.

We have, m₁ = m₂ = m

So, the speed of the combined mass is
.