Answer:
Extraneous
Explanation:
Extraneous variables are any variables that you are not intentionally studying in your experiment or test
Answer:
Matter is anything that has mass
Explanation:
The word "matter" refers to anything that has mass, either organic or inorganic. Matter is made up of atoms, which consists of a nucleus (made up of protons, positively charged, and neutrons, electrically neutron) and electrons which revolve around the nucleus.
The number of protons in the atom determine the element: there are more than 100 different elements in nature, with different properties depending on the number of electrons they have.
Matter can be in three different states also:
- solid: the atoms are tightly bond to each other, so they cannot move
- liquids: atoms are not bond to each other, so they can slide past each other, but still they have some intermolecular forces that keep them close to each other
- gas: atoms are free to move, as there are no forces that keep them close to each other
Answer:
a) 600 meters
b) between 0 and 10 seconds, and between 30 and 40 seconds.
c) the average of the magnitude of the velocity function is 15 m/s
Explanation:
a) In order to find the magnitude of the car's displacement in 40 seconds,we need to find the area under the curve (integral of the depicted velocity function) between 0 and 40 seconds. Since the area is that of a trapezoid, we can calculate it directly from geometry:
![Area \,\,Trapezoid=(\left[B+b]\,(H/2)\\displacement= \left[(40-0)+(30-10)\right] \,(20/2)=600\,\,m](https://tex.z-dn.net/?f=Area%20%5C%2C%5C%2CTrapezoid%3D%28%5Cleft%5BB%2Bb%5D%5C%2C%28H%2F2%29%5C%5Cdisplacement%3D%20%5Cleft%5B%2840-0%29%2B%2830-10%29%5Cright%5D%20%5C%2C%2820%2F2%29%3D600%5C%2C%5C%2Cm)
b) The car is accelerating when the velocity is changing, so we see that the velocity is changing (increasing) between 0 and 10 seconds, and we also see the velocity decreasing between 30 and 40 seconds.
Notice that between 10 and 30 seconds the velocity is constant (doesn't change) of magnitude 20 m/s, so in this section of the trip there is NO acceleration.
c) To calculate the average of a function that is changing over time, we do it through calculus, using the formula for average of a function:

Notice that the limits of integration for our case are 0 and 40 seconds, and that we have already calculated the area under the velocity function (the integral) in step a), so the average velocity becomes:

Answer:
1) The charge on the outer shell is +4·Q
2) The charge on the inner shell is +Q
Explanation:
1) The given parameters of the spherical shell are;
The net charge on the spherical shell = 3·Q
The point charge surrounded by the spherical shell = -Q
Let 'x' represent the charge on the outer shell, and let 'y', represent the charge on the inner shell, we have;
The net charge, 3·Q = -q + x
∴ x = 3·Q + Q = 4·Q
The charge on the outer shell, x = 4·Q
2) The net charge in the shell is zero, therefore, the charge on the inner shell, 'y', is given as follows;
-Q + y = 0
∴ y = +Q
The charge on the inner shell, y = +Q