To solve the problem it is necessary to apply the concepts related to Byle's Law and Avogadro's Law.
The ideal gas equation would help us find the final solution to the problem, defined by

Where,
T= Temperature of the gas
R = Universal as constant
n = number of moles
V = Volume
P = Pressure
For our case we have that the mass of Zn is 2.2g in moles would be
[/tex]

We know that 1 mole of hydrogen gas is proceed by 1 mole of zinc and the result is
, then Hydrogen can produce the same quantity,

Applying the previous equation we have that



Therefore the volume of hydrogen gas is collected is 0.829L
When you use a wrench to tighten or loosen a nut on a bolt, you are
applying torque. It is measured in units of force times distance.
A force of F newtons pulling on a handle of L meters in length would
supply a torque of F L newton-meters.
More technically, torque is the vector cross product of force times
perpendicular distance from the object, F x r = F r sin @
Acceleration is measured in meters per second square.
Answer:

Explanation:
Assume that the distance travelled initially is d.
In order to stop the block you need some external force which is friction.
If we use the law of energy conservation:

a)
Looking at the formula you can see that the mass doesn't affect the distance travelled, as lng as the initial velocity is constant (Which indicates that the force must be higher to push the block to the same speed) therefore the distance is the same.
b) If the velocity is doubled, then the distance travelled is multiplied by 4, because the distance deppends on the square of the velocity.
Answer:
friction reduces the efficiency of machines, thus we must reduce the friction force that is acting upon it.