1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Greeley [361]
3 years ago
14

If teta is an angle in right angle triangle if tan teta = 3/4 then find sin teta? ​

Mathematics
1 answer:
Hoochie [10]3 years ago
7 0

Answer:

\frac{3}{5}

Step-by-step explanation:

The adjacent sides are 3 and 4. Thus the hypotenuse is: (by Pythagoras Theorem)

$=\sqrt{3^2+4^2}$

$=\sqrt{25}$

$=5$

Now by definition of $\sin$, we get:

$\sin \theta= \frac{\text{opposite}}{\text{hypotenuse}}=\frac{3}{5}$

You might be interested in
Fred has 25 football cards Scott has 1/6 football card that's Fred how many football cards the Scots have
Westkost [7]
Scot would have 4 football cards..
Not 100% sure
Sorry =,(
5 0
3 years ago
Read 2 more answers
What is <br><img src="https://tex.z-dn.net/?f=12%20%7B%3F%7D%5E%7B2%7D%20%20%5C%5C%20" id="TexFormula1" title="12 {?}^{2} \\ "
marin [14]

a^n=\underbrace{a\cdot a\cdot a\cdot ...\cdot a}_{n}\\\\12^2=\underbrace{12\cdot12}_{2}=144

8 0
4 years ago
I need heeelllppp please
barxatty [35]

\frac{ { - 5}^{2}  +  {10}^{2} }{(2 \times ( - 5) \times 3) +  {3}^{3} } =  \frac{ - 25 + 100}{ - 30 + 27}   =  \\  =  \frac{75}{ - 3}  =  - 25

5 0
3 years ago
Read 2 more answers
draw to show how 2 child can equally share 3 cookies. write an equation, and express your answer as a fraction.
alexira [117]
First you draw threes cookies, then you give a cookie to each child, then with the last cookie you split it in half and they each have 1 1/2 cookie.
6 0
3 years ago
Please help me solve this problem ASAP
DiKsa [7]

\bold{\huge{\blue{\underline{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u></h3>

  • <u>The </u><u>right </u><u>angled </u><u>below </u><u>is </u><u>formed </u><u>by </u><u>3</u><u> </u><u>squares </u><u>A</u><u>, </u><u> </u><u>B </u><u>and </u><u>C</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>B</u><u> </u><u>has </u><u>an </u><u>area </u><u>of </u><u>1</u><u>4</u><u>4</u><u> </u><u>inches </u><u>²</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>C </u><u>has </u><u>an </u><u>of </u><u>1</u><u>6</u><u>9</u><u> </u><u>inches </u><u>²</u>

<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>

  • <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u><u>A</u><u>? </u>

<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u><u> </u></h3>

The right angled triangle is formed by 3 squares

<u>We </u><u>have</u><u>, </u>

  • Area of square B is 144 inches²
  • Area of square C is 169 inches²

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{ Area \: of \: square =  Side × Side }

Let the side of square B be x

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 144 =  x × x }

\sf{ 144 =  x² }

\sf{ x = √144}

\bold{\red{ x = 12\: inches }}

Thus, The dimension of square B is 12 inches

<h3><u>Now, </u></h3>

Area of square C = 169 inches

Let the side of square C be y

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 169 =  y × y }

\sf{ 169 =  y² }

\sf{ y = √169}

\bold{\green{ y = 13\: inches }}

Thus, The dimension of square C is 13 inches.

<h3><u>Now, </u></h3>

It is mentioned in the question that, the right angled triangle is formed by 3 squares

The dimensions of square be is x and y

Let the dimensions of square A be z

<h3><u>Therefore</u><u>, </u><u>By </u><u>using </u><u>Pythagoras </u><u>theorem</u><u>, </u></h3>

  • <u>The </u><u>sum </u><u>of </u><u>squares </u><u>of </u><u>base </u><u>and </u><u>perpendicular </u><u>height </u><u>equal </u><u>to </u><u>the </u><u>square </u><u>of </u><u>hypotenuse </u>

<u>That </u><u>is</u><u>, </u>

\bold{\pink{ (Perpendicular)² + (Base)² = (Hypotenuse)² }}

<u>Here</u><u>, </u>

  • Base = x = 12 inches
  • Perpendicular = z
  • Hypotenuse = y = 13 inches

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ (z)² + (x)² = (y)² }

\sf{ (z)² + (12)² = (169)² }

\sf{ (z)² + 144 = 169}

\sf{ (z)² = 169 - 144 }

\sf{ (z)² = 25}

\bold{\blue{ z = 5 }}

Thus, The dimensions of square A is 5 inches

<h3><u>Therefore</u><u>,</u></h3>

Area of square

\sf{ = Side × Side }

\sf{ = 5 × 5  }

\bold{\orange{ = 25\: inches }}

Hence, The area of square A is 25 inches.

6 0
2 years ago
Other questions:
  • the yeastie boys new album bread and the bank goes on sale next week they autographed 85% of 2000 copies before they were packag
    14·2 answers
  • WILL MARK AS BRAINLIEST PLZ HELP
    12·2 answers
  • There are 16 tables in the school lunch room each table can seat 22 students. How many students can be seated at lunch at one ti
    7·2 answers
  • What is the estimate for the question 308.3 ÷ 15
    12·2 answers
  • X² + ___ x + 49 plz answer as soon as possible
    12·2 answers
  • Determine o valor da expressão: -1 + 6 x (7 – 4 ÷ 2)​
    14·2 answers
  • Help with these plz. a.
    6·1 answer
  • A lampshade has a height of 12cm and upper and lower diameters of 10cm and 20cm A)what area of material is required to cover tha
    5·1 answer
  • Determine the area bounded by the curves f(x) = 4x and g(x) = 3x + 1.​
    12·1 answer
  • Answer this QUICK!!! 60 POINTS!!!!
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!