Answer:
thankkkkkksssssssssssssss
First, you find the velocity at each component. The general equation is:
a = (v2 - v1)/t
a,x = (v2,x - v1,x)/t
-0.105 = (v2,x - 8.57)/6.67
v2,x = 7.87 m/s
a,y = (v2,y - v1,y)/t
0.101 = (v2,y - -2.61)/6.67
v2,y = -1.94 m/s
To find the final speed, find the resultant velocity by taking the hypotenuse.
v^2 = (v2,x)^2 + (v2,y)^2
v^2 = (7.87)^2 + (-1.94)^2
v = 8.1 m/s
Which object? More information is needed to answer this question
Answer: The ball (option A)
Explanation: change in momentum is defined by the formulae m(v - u) where m = mass of object, v = final velocity and u = initial velocity.
For the ball, it hits the ground and bounces back with the same speed, that's final velocity equals initials (v = - u)
Change in momentum = m( -u- u) = m(-2u) = m(-2u) = -2mu
For the clay, it final velocity is zero since it sticks to the floor, hence (v =0)
m(v - u) = m(0 - u) = - mu.
-2mu (change in momentum from the ball) is greater than - mu ( change in momentum of clay)