The speed of sound at sea level is 340.29 m/s (meters per seconds).
Answer:
Δ h = 52.78 m
Explanation:
given,
Atmospheric pressure at the top of building = 97.6 kPa
Atmospheric pressure at the bottom of building = 98.2 kPa
Density of air = 1.16 kg/m³
acceleration due to gravity, g = 9.8 m/s²
height of the building = ?
We know,
Δ P = ρ g Δ h
(98.2-97.6) x 10³ = 1.16 x 9.8 x Δ h
11.368 Δ h = 600
Δ h = 52.78 m
Hence, the height of the building is equal to 52.78 m.
155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω
That would be an asteroid
Answer:
It will be cut in half
Explanation:
The diffraction of a slit is given by the formula
a sin θ = m where
a = width of the slit,
λ = wavelength and
m = integer that determines the order of diffraction.
Next we divide both sides by a, we have
sin θ = m λ / a
Also, recall that
a’ = 2 a
Then we substitute in the previous equation
2asin θ' = m λ, if divide by 2a, we have
sin θ' = (m λ / 2a).
Now again, from the first equation, we said that sin θ = m λ / a, so we substitute
sin θ ’= sin θ / 2
Then we use trigonometry to find the width, we say
tan θ = y / L
Since the angle is small, we then have
tan θ = sin θ / cos θ
tan θ = sin θ, this then means that
sin θ = y / L
we will then substitute
y’ / L = y/L 1/2
y' = y / 2
this means that when the slit width is doubled the pattern width will then be halved