The correct answer that would best complete the given statement above would be the second option. A screw is an inclined plane wrapped around a cylinder. <span>The efficiency of a screw is low because there is more input than output. In other words, it is because of friction. Hope this answer helps.</span>
Answer:
(a). The spring compressed is
.
(b). The acceleration is 1.5 g.
Explanation:
Given that,
Acceleration = a
mass = m
spring constant = k
(a). We need to calculate the spring compressed
Using balance equation

....(I)
The spring compressed is
.
(b). If the compression is 2.5 times larger than it is when the mass sits in a still elevator,
The compression is given by

Here, acceleration is zero
So, 
We need to calculate the acceleration
Put the value of x in equation (I)




Hence, (a). The spring compressed is
.
(b). The acceleration is 1.5 g.
The intensity of the magnetic force F experienced by a charge q moving with speed v in a magnetic field of intensity B is equal to

where

is the angle between the directions of v and B.
1) Re-arranging the previous formula, we can calculate the value of the magnetic field intensity. The charge is

. In this case, v and B are perpendicular, so

, therefore we have:

2) In this second case, the angle between v and B is

. The charge is now

, and the magnetic field is the one we found in the previous part, B=2.8 T, so we can find the intensity of the force experienced by this second charge:
Answer:
Fundamental frequency in the string will be 25 Hz
Explanation:
We have given length of the string L = 1.2 m
Speed of the wave on the string v = 60 m/sec
We have to find the fundamental frequency
Fundamental frequency in the string is equal to
, here v is velocity on the string and L is the length of the string
So frequency will be equal to 
So fundamental frequency will be 25 Hz
Current electricity is caused by flowing negatively charged particles.