Answer:
0.0303 Liters
Explanation:
Given:
Mass of the potassium hydrogen phosphate = 0.2352
Molarity of the HNO₃ Solution = 0.08892 M
Now,
From the reaction it can be observed that 1 mol of potassium hydrogen phosphate reacts with 2 mol of HNO₃
The number of moles of 0.2352 g of potassium hydrogen phosphate
= Mass / Molar mass
also,
Molar mass of potassium hydrogen phosphate
= 2 × (39.09) + 1 + 30.97 + 4 × 16 = 174.15 g / mol
Number of moles = 0.2352 / 174.15 = 0.00135 moles
thus,
The number of moles of HNO₃ required for 0.00135 moles
= 2 × 0.00135 mol of HNO₃
= 0.0027 mol of HNO₃
Now,
Molarity = Number of Moles / Volume
thus,
for 0.0027 mol of HNO₃, we have
0.08892 = 0.0027 / Volume
or
Volume = 0.0303 Liters
Yes it is available. It will continue catalyzing the reactions until it becomes completely consumed. That's how enzymes work. They work and are eventually consumed in the process completely without altering the reaction in any way other than speeding it up.
<span />
Hi there! Air and sunlight can definitely be reused. Those are abundant and renewable resources. Therefore, A and D are eliminated. There is a limited amount of water, however, it's impossible to run out of it to the point that there's no more on Earth. C is out. The only answer choice that makes sense is coal, because it's a nonrenewable resource, and it takes millions of years to make more of. It's a fossil fuel, so once we use them up, we can't get anymore during our lives. The answer is B: coal.
The answer is 23, 040 minutes. To solve this you can start by changing days in to hours. We know that there are 24 hours in a day. To find how many hours are in 16 days you multiply 24 by 16 which is 384. Next you must find out how many minutes are in 384 hours. we know there are 60 minutes per hour. To find how many minutes are in 384 hours, you multiply 384 by 60. To this you get 23, 040 which is your answer.