Answer:

Explanation:
Hello,
In this case, we find the following states:
a. Liquid salt water at 28.0 °C.
b. Liquid salt water at 102.5 °C.
c. Vapor salt water at 102.5 °C.
The first process (1) is to heat the liquid water from 28.0 °C to 102.5 °C and the second one (2) to vaporize the liquid salt water. In such a way, each process has an amount of energy that when added, yields the total energy for the process as shown below:

Best regards.
A compound with the formula C6H12 is not considered a Saturated hydrocarbon.
Why is C6H12 isn't considered a Saturated hydrocarbon?
The ring's presence demonstrates that it is unsaturated. Keep in mind that the general formula for aliphatic hydrocarbons, CnH2n+2, serves as the foundation for its saturation. A chemical is unsaturated if it does not meet this requirement.
Example:
Hexane (C6H14)
C = 6; H = 14 = 2(6) + 2
resulting in hexane becoming saturated.
Cyclohexane(C6H12)
C = 6 and H = 12 do not equal 14 (x)!
cyclohexane is an unsaturated molecule as a result.
Cycloalkanes have the general formula C2H2n as well.
Hence, the given statement is false.
Learn more about the hydrocarbons here,
brainly.com/question/17578846
# SPJ4
Explanation:
Different atoms binds their outermost shell electrons with different amount of energy.
The amount of energy required to remove an electron from an atom is the ionization energy.
- Ionization energy measures the readiness of an atom to lose electrons.
- From the given problem, we can infer that in group O the ionization energy decreases down the group.
- Helium has the highest ionization energy.
- Down a group on the periodic table, ionization energy decrease because:
- atomic radii increases down the group.
- there is an increasing shielding/screening effect of inner shell electrons on the outermost shell electrons.
Learn more:
Ionization energy brainly.com/question/2153804
#learnwithBrainly
Answer:
0.131 mol
Explanation:
To convert grams to moles, you need to use the molar mass. The molar mass is the mass number. You can find this on the periodic table. The molar mass of sodium is 22.990 g/mol.
(3.02 g)/(22.990 g/mol) = 0.131 mol