<h3><u>Question:</u></h3>
The perimeter of a rectangle is 34 units. Its width W is 6.5 units.
Write an equation to represent the perimeter in terms of the length L, and find the value of L
<h3><u>Answer:</u></h3>
The length of rectangle is 10.5 units
<h3><u>
Solution:</u></h3>
Given that,
Perimeter of rectangle = 34 units
Width of rectangle = 6.5 units
Let "L" be the length of rectangle
<em><u>The perimeter of rectangle is given by formula:</u></em>
Perimeter = 2(length + width)
<em><u>Substituting the values we get,</u></em>

Thus the equation is found
<em><u>Solve for "L"</u></em>

Thus length of rectangle is 10.5 units
False. A reflection over the y-axis would result in: (-8,5)
For this case we must simplify the following expression:

So, we have:

We apply double C:

We simplify:

Answer:
The simplified expression is:

Answer:
The weight of the enlarged paperweight is 
Step-by-step explanation:
we know that
If two figures are similar, then the ratio of its volumes (or its weights) is equal to the scale factor elevated to the cube
Let
z-----> the scale factor
x ----> the enlarged paperweight weight
y ----> the original paperweight weight

we have


substitute and solve for x

