5*3=15
15-4= 11
hope I helped:)
You can try to show this by induction:
• According to the given closed form, we have
, which agrees with the initial value <em>S</em>₁ = 1.
• Assume the closed form is correct for all <em>n</em> up to <em>n</em> = <em>k</em>. In particular, we assume

and

We want to then use this assumption to show the closed form is correct for <em>n</em> = <em>k</em> + 1, or

From the given recurrence, we know

so that






which is what we needed. QED
$2.50 was left for each person.
4(9.50) + x = 48
38 + x = 48
subtract 38 on both sides
x = 10
10$ was left in total by all 4 people
10/4 = 2.50
$2.50 was left over for each person
Answer:
H0: μ = 5 versus Ha: μ < 5.
Step-by-step explanation:
Given:
μ = true average radioactivity level(picocuries per liter)
5 pCi/L = dividing line between safe and unsafe water
The recommended test here is to test the null hypothesis, H0: μ = 5 against the alternative hypothesis Ha: μ < 5.
A type I error, is an error where the null hypothesis, H0 is rejected when it is true.
We know type I error can be controlled, so safer option which is to test H0: μ = 5 vs Ha: μ < 5 is recommended.
Here, a type I error involves declaring the water is safe when it is not safe. A test which ensures that this error is highly unlikely is desirable because this is a very serious error. We prefer that the most serious error be a type I error because it can be explicitly controlled.