A :-) 1.) Given - base = 9 cm
height ( alt ) = 12 cm
hypotenuse ( hypo ) = x
Solution -
By Pythagorus theorem
( hypo )^2 = ( base )^2 + ( alt )^2
( x )^2 = ( 9 )^2 + ( 12 ) ^2
( x )^2 = 81 + 144
( x )^2 = 225
( x ) = _/225
( x ) = 15 cm
.:. The value of x ( hypotenuse ) = 15 cm
2.) Given - base = 10 cm
Height = 24 cm
Hypotenuse = x
Solution -
By pythagorus theorem
( hypo )^2 = ( base )^2 + ( alt )^2
( x )^2 = ( 10 )^2 + ( 24 )^2
( x )^2 = 100 + 576
( x )^2 = 676
( x ) = _/676
( x ) = 26
.:. The value of x ( hypotenuse ) = 26 cm
3.) Given - base = 3 cm
Height = 7 cm
Hypotenuse = x
Solution -
By pythagorus theorem
( hypo )^2 = ( base )^2 + ( alt )^2
( x )^2 = ( 3 )^2 + ( 7 )^2
( x )^2 = 9 + 49
( x )^2 = 58
( x ) = _/58
( x ) = 7.6
.:. The value of x ( hypotenuse ) = 7.6 cm
4.) Given - base = 10 cm
Height = 6 cm
Hypotenuse = x
Solution -
By pythagorus theorem
( Hypo )^2 = ( base )^2 + ( alt )^2
( x )^2 = ( 10 )^2 + ( 6 )^2
( x )^2 = 100 + 36
( x )^2 = 136
( x ) = _/136
( x ) = 11.6
.:. The value of x ( hypotenuse ) = 11.6 cm
5.) Given - hypotenuse = 24 cm
height = 6 cm
Base = x
Solution -
By pythagorus theorem
( hypo )^2 = ( base )^2 + ( alt )^2
( 24 )^2 = ( x )^2 + ( 6 )^2
( x )^2 = ( 6 )^2 - ( 24 )^2
( x )^2 = 36 - 576
( x )^2 = -540
( x ) = _/-540
( x ) = 23.2
.:. The value of x ( base ) = 23.2 cm
6.) Given - base = 1 cm
height = 1 cm
hypotenuse = x
Solution -
By pythagorus theorem
( hypo )^2 = ( base )^2 + ( alt )^2
( x )^2 = ( 1 )^2 + ( 1 )^2
( x )^2 = 1 + 1
( x )^2 = 2
( x ) = _/2
( x ) = 1.4
.:. The value of x ( hypotenuse ) = 1.4 cm
7.) Given - hypotenuse = 21 cm
height = 8 cm
Base = x
Solution -
By pythagorus theorem
( hypo )^2 = ( base )^2 + ( alt )^2
( 21 )^2 = ( x )^2 + ( 8 )^2
441 = ( x )^2 + 64
( x )^2 = 64 - 441
( x )^2 = -377
( x ) = _/-377
( x ) = 19.4
.:. The value of x ( base ) = 19.4
8.) given - height = 24 cm
Hypotenuse = 30cm
Base = x
Solution -
By pythagorus theorem
( hypo )^2 = ( base )^2 + ( alt )^2
( 30 )^2 = ( x )^2 + ( 24 )^2
900 = ( x )^2 + 576
( x )^2 = 576 - 900
( x )^2 = -324
( x ) = _/-324
( x ) = 18
.:. The value of x ( base ) = 18 cm
9.) ( i ) lets find ‘x’
Given - base = 9 cm
height = 5 cm
hypotenuse = x
Solution -
By pythagorus theorem
( hypo )^2 = ( base )^2 + ( alt )^2
( x )^2 = ( 9 )^2 + ( 5 )^2
( x )^2 = 81 +25
( x )^2 = 106
( x ) = _/106
( x ) = 10.2
.:. The value of x ( hypotenuse )
= 10.2 cm
( ii ) lets find ‘y’
Given - base = 3 cm
height = 5 cm
Hypotenuse = y
Solution -
By pythagorus theorem
( hypo )^2 = ( base )^2 + ( alt )^2
( y )^2 = ( 3 )^2 + ( 5 )^2
( y )^2 = 9 + 25
( y )^2 = 34
( y ) = _/34
( y ) = 5.8
.:. The value of y ( hypotenuse )
= 5.8 cm
Step-by-step explanation:
u vector components:
x-comp = 8 - (-17) = 25
x-comp = -11 - 4 = -15
Therefore, we can write vector u as
u = 25i - 15j
v = 14i - 4j
u - v = 11i - 11j
Therefore,
2(u - v) = 22i - 22j
The digits base is 7 then we should convert them into base 6.
The exponent or power to which a base must be raised to yield a given number. Expressed mathematically, x is the logarithm of n to the base b if bx = n, in which case one writes x = logbn.
Here the conclusion is that there are many bases in the mathematics so what will happen is that we should convert these bases. For example, we have to convert base 10 of a number which is called decimal number can be converted into binary number whose base is 2 and after then if the digits base is 7 then we should convert them into base 6.
To learn more about power visit brainly.com/question/14265973
SPJ4