1) Mean
The mean is given by the sum of the data divided by the number of data (4, in this case):
![\mu = \frac{1}{N} \sum x_i = \frac{1}{4}(72.42+91.50+58.99+69.02) = \frac{291.93}{4}=72.98 $](https://tex.z-dn.net/?f=%5Cmu%20%3D%20%20%20%5Cfrac%7B1%7D%7BN%7D%20%5Csum%20x_i%20%3D%20%5Cfrac%7B1%7D%7B4%7D%2872.42%2B91.50%2B58.99%2B69.02%29%20%3D%20%5Cfrac%7B291.93%7D%7B4%7D%3D72.98%20%24%20%20)
2) Standard deviation
The standard deviation is given by:
![\sigma = \sqrt{ \frac{1}{N} \sum (x_i-\mu)^2 }](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%20%5Csqrt%7B%20%5Cfrac%7B1%7D%7BN%7D%20%5Csum%20%28x_i-%5Cmu%29%5E2%20%7D%20%20)
where
![\mu](https://tex.z-dn.net/?f=%5Cmu)
is the mean, that we already found at point 1), and N=4. Substituting data, we have:
![\sigma = \sqrt{ \frac{1}{4} ((-0.56)^2+(18.52)^2+(-13.99)^2+(-3.96)^2) } =](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%20%5Csqrt%7B%20%5Cfrac%7B1%7D%7B4%7D%20%28%28-0.56%29%5E2%2B%2818.52%29%5E2%2B%28-13.99%29%5E2%2B%28-3.96%29%5E2%29%20%7D%20%3D)
Your answer should have been 3850 in^2
1^2/5^2 = 1/25
1/25 = 154/x
1x= 154 (25)
1x/1= 3850/1
x= 3850
The anwser is 5x-3 because you remove the parentheses and pair like terms
The answer is 1/(x+4)
Explanation:
You would factor out the denominator
So,
(X-4)(x+4)=x^2-16
So, x-4/(x+4)(x-4)
Then x-4 cancels each other out from the numerator and denominator
Leaving 1/x+4
Answer:
55 1/50 or 2751/50
Step-by-step explanation:
Convert both expressions to improper form
Make their denominators the same
Multiply the numerators
Simplify the fraction if needed