The correct option is (A) 2.5 m/s
Explanation:
Since,
v = fλ ---- (1)
where v = speed of the wave
f = frequency of the wave = 5 Hz
λ = wavelength of the wave = 0.5
Plug in the value in (1):
(1) => v = 5 * 0.5
v = 2.5 m/s
Answer: the sun
Explanation:
The sun's radiant energy reaches the earth's surface either directly through radiation, indirectly through convection, or it can move "across" or "through" objects or materials on the surface via conduction. Let's look more closely at each case. We've probably experienced the feeling of "warmth" of the sun on our skin on a sunny day. Light energy from the sun is reaching us across space and down through the atmosphere through radiation. A dark colored vehicle in the sun quickly becomes warm (or hot!) to the touch because of radiation. The light energy from the sun heats the air in the earth's atmosphere, and this drives convection and transfers thermal energy around. It is possible that we've felt a "hot breeze" on our skin on sunny days. The thermal energy in the air will be carried to objects in its path, and it will warm them.
Light because it is an electromagnetic wave and they can travel through the vacuum in outer space.
The infrared<span> (</span>IR<span>) and the </span>ultraviolet(UV<span>) represent the two extremities of the visible spectrum (400-700nm). While </span>IR<span> represents electromagnetic radiation
with wavelengths longer than those of visible </span>light<span>, </span>UV<span> represents wavelengths
shorter than visible </span>light<span>.
</span><span>
</span>
Answer:
Velocity of the vehicle (v) = 6.5 m/s
Explanation:
Mass of automobile (m) = 1200 kg
Momentum of vehicle (p) = 7800 kg m/s
By using formula of momentum:
