Answer:
Option (a) is correct.
Explanation:
Contribution margin per marketing plan = Sales - Variable cost
= $3,000 - $2,000
= $1,000
A.
(1) ![Break-even\ in\ rooms=\frac{Fixed\ cost}{contribution\ margin\ per\ marketing\ plan}](https://tex.z-dn.net/?f=Break-even%5C%20in%5C%20rooms%3D%5Cfrac%7BFixed%5C%20cost%7D%7Bcontribution%5C%20margin%5C%20per%5C%20marketing%5C%20plan%7D)
![Break-even\ in\ rooms=\frac{400,000}{1,000}](https://tex.z-dn.net/?f=Break-even%5C%20in%5C%20rooms%3D%5Cfrac%7B400%2C000%7D%7B1%2C000%7D)
Break even in marketing plan = 400
(2) Break-even in dollars:
= Break-even in marketing plan × Average rate per plan
= 400 × 3,000
= 1,200,000
(3) Margin of safety = Actual sales - Break-even sales in dollars
= 1,500,000 - 1,200,000
= 300,000
![Margin\ of\ safety\ ratio=\frac{Margin\ of\ safety}{Actual\ sales}](https://tex.z-dn.net/?f=Margin%5C%20of%5C%20safety%5C%20ratio%3D%5Cfrac%7BMargin%5C%20of%5C%20safety%7D%7BActual%5C%20sales%7D)
![Margin\ of\ safety\ ratio=\frac{300,000}{1,500,000}](https://tex.z-dn.net/?f=Margin%5C%20of%5C%20safety%5C%20ratio%3D%5Cfrac%7B300%2C000%7D%7B1%2C500%2C000%7D)
= 20%
B.
(1) Contribution margin per marketing plan = Sales - Variable cost
= $4,000 - $2,000
= $2,000
![Break-even\ in\ rooms=\frac{Fixed\ cost}{contribution\ margin\ per\ marketing\ plan}](https://tex.z-dn.net/?f=Break-even%5C%20in%5C%20rooms%3D%5Cfrac%7BFixed%5C%20cost%7D%7Bcontribution%5C%20margin%5C%20per%5C%20marketing%5C%20plan%7D)
![Break-even\ in\ rooms=\frac{400,000}{2,000}](https://tex.z-dn.net/?f=Break-even%5C%20in%5C%20rooms%3D%5Cfrac%7B400%2C000%7D%7B2%2C000%7D)
Break even in marketing plan = 200
(2) Break-even in dollars:
= Break-even in marketing plan × Average rate per plan
= 200 × 4,000
= 800,000
(3) Margin of safety = Actual sales - Break-even sales in dollars
= 1,500,000 - 800,000
= 700,000
![Margin\ of\ safety\ ratio=\frac{Margin\ of\ safety}{Actual\ sales}](https://tex.z-dn.net/?f=Margin%5C%20of%5C%20safety%5C%20ratio%3D%5Cfrac%7BMargin%5C%20of%5C%20safety%7D%7BActual%5C%20sales%7D)
![Margin\ of\ safety\ ratio=\frac{700,000}{1,500,000}](https://tex.z-dn.net/?f=Margin%5C%20of%5C%20safety%5C%20ratio%3D%5Cfrac%7B700%2C000%7D%7B1%2C500%2C000%7D)
= 47%
Therefore, option (a) would achieve the margin of safety ratio more than 45%.