Answer:
f(x)=-18x^2
Step-by-step explanation:
Given:
1+Integral(f(t)/t^6, t=a..x)=6x^-3
Let's get rid of integral by differentiating both sides.
Using fundamental of calculus and power rule(integration):
0+f(x)/x^6=-18x^-4
Additive Identity property applied:
f(x)/x^6=-18x^-4
Multiply both sides by x^6:
f(x)=-18x^-4×x^6
Power rule (exponents) applied"
f(x)=-18x^2
Check:
1+Integral(-18t^2/t^6, t=a..x)=6x^-3
1+Integral(-18t^-4, t=a..x)=6x^-3
1+(-18t^-3/-3, t=a..x)=6x^-3
1+(6t^-3, t=a..x)=6x^-3
That looks great since those powers are the same on both side after integration.
Plug in limits:
1+(6x^-3-6a^-3)=6x^-3
We need 1-6a^-3=0 so that the equation holds true for all x.
Subtract 1 on both sides:
-6a^-3=-1
Divide both sides by-6:
a^-3=1/6
Raise both sides to -1/3 power:
a=(1/6)^(-1/3)
Negative exponent just refers to reciprocal of our base:
a=6^(1/3)
Answer:
7:5 is the same as 21: 15
Step-by-step explanation:
21/7 = 3 and 3*5=15
i divided 21 by 7 to see how many times it was multiplied to get there, so i could do the same thing to the 5
I hope this helps :)
if the sphere has a diameter of 5, then its radius is half that, or 2.5.
![\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=2.5 \end{cases}\implies V=\cfrac{4\pi (2.5)^3}{3}\implies V=\cfrac{62.5\pi }{3} \\\\\\ V\approx 65.44984694978736\implies V=\stackrel{\textit{rounded up}}{65.45}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20sphere%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D2.5%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B4%5Cpi%20%282.5%29%5E3%7D%7B3%7D%5Cimplies%20V%3D%5Ccfrac%7B62.5%5Cpi%20%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20V%5Capprox%2065.44984694978736%5Cimplies%20V%3D%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7B65.45%7D)
Answer:348
Step-by-step explanation: