Answer:
5.8 L
Step-by-step explanation:
This looks like a case where we can use the <em>Combined Gas Law</em> to calculate the temperature.
p₁V₁/T₁ = p₂V₂/T₂ Multiply both sides by T₂
p₁V₁T₂/T₁ = p₂V₂ Divide each side by V₂
V₂ = V₁ × p₁/p₂ × T₂/T₁
=====
<em>Data</em>:
p₁ = 5.6 atm
V₁ = 20 L
T₁ = 35 °C = 308.15 K
p₂ = 23 atm
V₂ = ?
T₂ = 95 °C = 368.15 K
=====
<em>Calculation:
</em>
V₂ = 20 × 5.6/23 × 368.15/308.15
V₂ = 20 × 0.243 × 1.19
V₂ = 5.8 L
Answer:
The reason why Newtons first law of motion is sometimes called the law of inertia is because it states that if the object is in motion, it will not rest unless an unbalanced force acts on the object.
Answer:
nitrogen
Explanation:
Nitrogen, in cans of Guinness stout (to give it that distinctive head) and in fire suppression systems.
Answer:
k = 2,04x10⁻⁵
Explanation:
The equilibrium of acetic acid (CH₃COOH) in water is:
CH₃COOH ⇄ CH₃COO⁻ + H⁺.
And the equilibrium constant is defined as:
k = [CH₃COO⁻] [H⁺] / [CH₃COOH] <em>(1)</em>
The equiibrium concentration of each specie if the solution of acetic acid is 0,05M is:
[CH₃COOH] = 0,05M - x
[CH₃COO⁻] = x
[H⁺] = x
<em>-Where x is the degree of reaction progress-</em>
As the pH is 3, [H⁺] = 1x10⁻³M. That means x = 1x10⁻³M
Replacing in (1):
k = (1x10⁻³)² / 0,05 - 1x10⁻³
k = 1x10⁻⁶ / 0,049
<em>k = 2,04x10⁻⁵</em>
<em></em>
I hope it helps!