Answer:
See explanation
Explanation:
Atomic size increases down the group due to the addition of more shells.
As more shells are added and repulsion of inner electrons become more significant, atomic size increases down the group. However, across the period, atomic size decreases due to increase in effective nuclear charge without any increase in the number of shells. This causes increased attraction between the nucleus and the outermost shell thereby decreasing the size of the atom.
Ionization energy decreases down the group because the outermost electron is more shielded by inner electrons making it easier for this outermost electron to be lost. Across the period, ionization energy increases due to increase in effective nuclear charge which makes it more difficult to remove the outermost electron due to increased nuclear attraction.
Answer:
<h2>The advantage is that, you can add additional power devices usually using batteries.</h2>
<h2>The disadvantage is ... if one component in a series circuit fails, then all the components in the circuit fail because the circuit has been broken. </h2>
Answer:
<h3>Compound are substances which can be formed by chemically combining two or more elements. Mixtures are substances that are formed by physically mixing two or more substances.</h3>
Answer: , 4 molecules of ammonia, NH3(g) is produced; 2 molecules of ammonia, NH3(g) is produced respectively
Explanation:
The balanced equation is stated below N2(g) + 3H2(g) → 2NH3(g)
1 mole of N2(g) reacts with 3 moles of H2(g) to yield 2 moles of NH3(g)
1) If 2 molecules of N2 react, then the balanced equation will be
2N2(g) + 6H2(g) → 4NH3(g)
Thus, 4 molecules of ammonia, NH3(g) is produced
2) If 3 molecules of H2 react, then the balanced equation will be
N2(g) + 3H2(g) → 2NH3(g)
Thus, 2 molecules of ammonia, NH3(g) is produced
Every isotope of an element has a different number of neutrons, which means that the atomic property which is different in each isotope of an element is mass number.
Mass number depends on the number of neutrons in an element.