Answer:
Approx. 4⋅g.
Explanation:
Moles of sulfuric acid =10.0⋅g98.08⋅g⋅mol−1=0.102⋅mol.
Now we have the molar quantity of sulfuric acid that react; we also have the stoichiometric equation that shows the molar equivalence of sulfuric acid, and lithium hydroxide.
Given the stoichiometry,
mass of water =0.102⋅mol×2×18.01.g.mol−1=??⋅g.
Why did I multiply the mass in this equation by 2? Am I pulling your leg?
Explanation:
The molar mass of the compounds are incorrect
Answer:
CH₃CO₂H + H₂O ⇄ CH₃CO₂⁻ + H₃O⁺
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base or vice versa.
For the acetic acid buffer, CH₃CO₂H is the weak acid and its conjugate base is the ion without H⁺, that is CH₃CO₂⁻. The equilibrium equation in water knowing this is:
<h3>CH₃CO₂H + H₂O ⇄ CH₃CO₂⁻ + H₃O⁺</h3>
<em>In the equilibrium, the acid is dissociated in the conjugate base and the hydronium ion.</em>
I believe it is C, as helium is one of the lightest noble gases making the particles move faster.
<span>The term used by meteorologists for predicting the we ather is </span>forecasting