Answer:
The magnitude of the velocity of glider B is 0.2m/s and the direction is the negative direction
Explanation:
Inelastic Collision
Given data
mass of glider A m1= 0.125kg
initial velocity u1=0
final velocity v1= 0.600 m/s
mass of glider B m2= 0.375kg
initial velocity u2=0
final velocity v2=?
We know that the expression for the conservation of momentum is given as
m1u1+m2u2=m1v1+m2v2
since u1=u2=u=0m/s
u(m1+m2)=m1v1+m2v2
substituting we have
0(0.125+0.0375)=0.125*0.6+0.375*v2
0=0.075+0.375v2
0.375v2=-0.075
v2=-0.075/0.375
v2=-0.2m/s
The magnitude of the velocity of glider B is 0.2m/s and the direction is the negative direction
Answer:
h = 22.35 m
Explanation:
given,
initial speed of the rock,u = 0 m/s
length of the window,l = 2.7 m
time taken to cross the window,t = 0.129 s
Speed of the rock when it crosses the window


v = 20.93 m/s
height of the building above the window
using equation of motion
v² = u² + 2 g h
20.93² = 0² + 2 x 9.8 x h
h = 22.35 m
Hence, the height of the building above the top of window is equal to h = 22.35 m
Answer: the answer should be 6,720 decameters.
Answer:
<u><em>0.03 m/s</em></u>
Explanation:
<em>Applying law of conservation of momentum, </em>
- <em>m₁v₁ + m₂v₂ = (m₁ + m₂)v</em>
- <em>0.105(24) + 75(0) = (0.105 + 75)v</em>
- <em>75.105v = 2.52</em>
- <em>v = 2.52/75.105</em>
- <em>v = </em><u><em>0.03 m/s</em></u>
According to Newton laws of motion,
F = m*a
Here, m = 1,560 Kg
a = 1.30 m/s²
Substitute their values,
F = 1,560 * 1.30
F = 2028 N ~ 2030 N [ Closest value ]
In short, Your Answer would be Option C
Hope this helps!