Answer:
3.21
Explanation:
The relation between frequency and wavelength is shown below as:
c is the speed of light having value
Given, Frequency = 93.5 MHz =
Thus, Wavelength is:
<u>Answer - A.</u>
Answer:
a) 0.147 N
b) 9.408 N
c) 9.261 N
Explanation:
The tension on the cord is the only force keeping the block in circular motion, thus representing the entirety of its centripetal force . Plugging in values for initial and final states and we get answers for a and b. The work done by the person causes the centripetal force to increase, and thus is the difference between the final tension and the initial tension.
The sweater has a tendency to attract electrons.
The leather jacket has a lower tendency to attract electrons than the sweater.
Explanation:
The sweater and the leather jackets are made up of distinct fabrics that based on their minutest particles called an atom.
An atom is made up of sub-atomic particles of protons, neutrons and electrons.
- Electrons occupies the bulk volume of the atom and they are easily lost in atoms that are big. They are negatively charged.
- Protons are positively charged and are very difficult to lose. They occupy the tiny nucleus with neutrons.
- A body that becomes negatively charged will be said to have a hihg tendency to attract electrons. Normally atoms are electrically neutral. When additional electrons are added to them, they become negatively charged.
- In this case, the sweater has a high affinity for electrons and it will attract the ones on the leather jacket.
- The leather jacket has a low tendency to attract electrons than the sweater and it will lose some of its electrons to the sweater.
Learn more:
Protons, neutrons and electrons brainly.com/question/2757829
#learnwithBrainly
In optics, chromatic aberration (abbreviated CA; also called chromatic distortion and spherochromatism) is an effect resulting from dispersion in which there is a failure of a lens to focus all colors to the same convergence point.[1] It occurs because lenses have different refractive indices for different wavelengths of light. The refractive index of transparent materials decreases with increasing wavelength in degrees unique to each.