Answer: 12
Explanation:
Let’s take for instance the case of a wave with a frequency of 400 Hz going through a material at a speed of .5 m/s. The wavelength result is 12 m. Wave velocity (m/s) = Frequency (Hz) x Wavelength (m)
Answer:
The value is 
Explanation:
From the question we are told that
The weight of the block is 
The dimension of the block is 
Generally two atmosphere is equivalent to

Generally 1 atm = 
The area of the block would be evaluated using width and height because we need for the smaller surface to be in contact with the ground in order to maximize the pressure and minimize number of blocks
So

=> 
Generally the force due to this blocks is mathematically represented as

Here N is the number of blocks
So

=> 
Answer:
539.5°
Explanation:
33.3 revolutions per minute
1 revolution = 360°
1 minute = 60 seconds
hence
33.3 revs ----> 1 minute = 60 seconds
X revs -----------> 2.70 seconds
X = (33.3 x 2.7)÷60 = 1.4985 revolutions in 2.70 seconds
1.4985 revolutions = 1.4985 x 360 = 539.46
which is approximately 539.5°
Answer:
λ
=8.57 μ m
Explanation:
Given that
Ey = 375 cos [kx − (2.20 × 10¹⁴ rad/s)t] N/C
Standard form
Ey=Eo cos[k x-ωt] N/C
By comparing the given equation with the standard wave equation
Eo = 375 N/C
ω = 2.20 × 10¹⁴ rad/s
We know that ω = 2 π f
f=3.50×10¹³ Hz
We know that the velocity given as
V = f λ
λ
=Wavelength
V=Speed = 3 x 10⁸ m/s
λ
=0.00000857 m ( 1 μ m = 10⁶ m)
λ
=8.57 μ m
Answer:

Explanation:
Knowing that the formula for average velocity is:

Being said that, we know that the person's displacement is zero because it returns to its starting point

That means 
