Answer:
The distance from charge 5 μ C = 26.45 cm and the distance from - 4 μ C is 23.55 cm.
Explanation:
Given that
q₁ = 5 μ C
q₂ = - 4 μ C
The distance between charges = 50 cm
d= 50 cm
Lets take at distance x from the charge μ C ,the electrical field is zero.
That is why the distance from the charge - 4 μ C = 50 - x cm
We know that ,electric field is given as


Therefore the distance from charge 5 μ C = 26.45 cm and the distance from - 4 μ C is 23.55 cm.
Answer:
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Explanation:
Hi there!
The equations of height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height at time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).
v = velocity of the ball at time t.
Placing the origin at the throwing point, y0 = 0.
Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.
v = v0 + g · t
6.00 m/s = 12.0 m/s -9.81 m/s² · t
(6.00 - 12.0)m/s / -9.81 m/s² = t
t = 0.612 s
Now, let´s calculate the height of the baseball at that time:
y = y0 + v0 · t + 1/2 · g · t² (y0 = 0)
y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²
y = 5.51 m
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Have a nice day!
Answer:
ΔT = 0.02412 s
Explanation:
We will simply calculate the time for both the waves to travel through rail distance.
FOR THE TRAVELING THROUGH RAIL:

FOR THE WAVE TRAVELING THROUGH AIR:

The separation in time between two pulses can now be given as follows:

<u>ΔT = 0.02412 s</u>
It takes more energy to remove the second electron from a lithium atom than it does to remove the fourth electron from a carbon atom because its inner core e, not valence e. C's 4th removed e is still a valence e. And also <span>because more nuclear charge acting on the second electron, it is more close to the nucleus, thus the the protons attract it more than the 4th electron.</span>
The magnitude of the electric field at the proton's location is 10,437.5 N/C.
<h3>What the magnitude of the
electric field?</h3>
The size of the electric field is basically characterized as the power per charge on the test charge. On the off chance that the electric field strength is meant by the image E. Very much like gravity, electric fields work the same way. In any case, while gravity generally draws in, an electric field, then again, can either rebuff or draw in. By and large, the Electric Field submits to the super-position guideline. the all out Electric Field from various charges is equivalent to the amount of the electric fields from each charge separately. An electric field is the actual field that encompasses electrically charged particles and applies force on any remaining charged particles in the field, either drawing in or repulsing them.
Learn more about the magnitude of the electric field, visit
brainly.com/question/26898699
#SPJ4