Answer:

Step-by-step explanation:
Let L be the length of the ladder,
Given,
x = the distance from the base of the ladder to the wall, and t be time.
y = distance from the base of the ladder to the wall,
So, by the Pythagoras theorem,

,
Differentiating with respect to time (t),




Here,

Also,
( Ladder length = constant ),




Which is the required notation.
Answer:
1) 
2) 
3) 
And the variance would be given by:
![Var (M)= E(M^2) -[E(M)]^2 = 207.1 -(13.9^2)= 13.89](https://tex.z-dn.net/?f=Var%20%28M%29%3D%20E%28M%5E2%29%20-%5BE%28M%29%5D%5E2%20%3D%20207.1%20-%2813.9%5E2%29%3D%2013.89)
And the deviation would be:
4) 
And the variance would be given by:
![Var (J)= E(J^2) -[E(J)]^2 = 194.8 -(11.8^2)= 55.56](https://tex.z-dn.net/?f=Var%20%28J%29%3D%20E%28J%5E2%29%20-%5BE%28J%29%5D%5E2%20%3D%20194.8%20-%2811.8%5E2%29%3D%2055.56)
And the deviation would be:
Step-by-step explanation:
For this case we have the following distributions given:
Probability M J
0.3 14% 22%
0.4 10% 4%
0.3 19% 12%
Part 1
The expected value is given by this formula:

And replacing we got:

Part 2

Part 3
We can calculate the second moment first with the following formula:

And the variance would be given by:
![Var (M)= E(M^2) -[E(M)]^2 = 207.1 -(13.9^2)= 13.89](https://tex.z-dn.net/?f=Var%20%28M%29%3D%20E%28M%5E2%29%20-%5BE%28M%29%5D%5E2%20%3D%20207.1%20-%2813.9%5E2%29%3D%2013.89)
And the deviation would be:
Part 4
We can calculate the second moment first with the following formula:

And the variance would be given by:
![Var (J)= E(J^2) -[E(J)]^2 = 194.8 -(11.8^2)= 55.56](https://tex.z-dn.net/?f=Var%20%28J%29%3D%20E%28J%5E2%29%20-%5BE%28J%29%5D%5E2%20%3D%20194.8%20-%2811.8%5E2%29%3D%2055.56)
And the deviation would be:
Answer:
Of(7) = f(1) + 24
Step-by-step explanation:
Since this Arithmetic Sequence can be written recursively as a function, then we can write the whole sequence, by adding the common difference to the previous function. So writing it as an Arithmetic formula is (placing an example, with a common difference of 4 units):

this is ur answer i hope u do well good luck:
If we evaluate the function at infinity, we can immediately see that:

Therefore, we must perform an algebraic manipulation in order to get rid of the indeterminacy.
We can solve this limit in two ways.
<h3>Way 1:</h3>
By comparison of infinities:
We first expand the binomial squared, so we get

Note that in the numerator we get x⁴ while in the denominator we get x³ as the highest degree terms. Therefore, the degree of the numerator is greater and the limit will be \infty. Recall that when the degree of the numerator is greater, then the limit is \infty if the terms of greater degree have the same sign.
<h3>Way 2</h3>
Dividing numerator and denominator by the term of highest degree:



Note that, in general, 1/0 is an indeterminate form. However, we are computing a limit when x →∞, and both the numerator and denominator are positive as x grows, so we can conclude that the limit will be ∞.