Answer:
Step-by-step explanation:
0
r
= 1
The answer is (1/2)xe^(2x) - (1/4)e^(2x) + C
Solution:
Since our given integrand is the product of the functions x and e^(2x), we can use the formula for integration by parts by choosing
u = x
dv/dx = e^(2x)
By differentiating u, we get
du/dx= 1
By integrating dv/dx= e^(2x), we have
v =∫e^(2x) dx = (1/2)e^(2x)
Then we substitute these values to the integration by parts formula:
∫ u(dv/dx) dx = uv −∫ v(du/dx) dx
∫ x e^(2x) dx = (x) (1/2)e^(2x) - ∫ ((1/2) e^(2x)) (1) dx
= (1/2)xe^(2x) - (1/2)∫[e^(2x)] dx
= (1/2)xe^(2x) - (1/2) (1/2)e^(2x) + C
where c is the constant of integration.
Therefore,
∫ x e^(2x) dx = (1/2)xe^(2x) - (1/4)e^(2x) + C
First, you have to get the equation to the normal form of a line. To do this, you divide both sides by -6 to get

. The y-intercept is at -4 and your slope is 2/3. Use this to graph the equation.
X=1 is the answer to your question
Answer:
Option C x>0
GOOD LUCK FOR THE FUTURE ! :)