Which of the following represents eighth root of x to the fifth power in exponential form?
2 answers:
Answer with explanation:
Eighth root of x to the fifth power in exponential form can be written as:
First note that the nth root of a number, a, is a^(1/n).
So you have:
(x^5)^(1/8)
Next note that (a^b)^c=a^(bc) so you have:
x^(5(1/8))
x^(5/8) or if you'd rather have a decimal...
x^(0.625)
You might be interested in
Answer:
Step-by-step explanation:
(G n m) = [Max, Anael]
(G u S) = [Acel, Action, Anael, Max, Carl, Dario, Carlin, Kia, Barak]
Answer: 23
Step-by-step explanation:
Answer:
a and -b is the answer
Step-by-step explanation:
(x-a)(x+b) = 0
x-a = 0 and x+b = 0
then
x = a and x = -b
Step-by-step explanation:
Factor 98n2−200
98n2−200
=2(7n+10)(7n−10)
Answer:
2(7n+10)(7n−10)
Gcf is 7 since 21 can only be divided by 7 inn this situation