For the first part, we are looking for Vf when dy=11.0
Upward is positive, downward is negative.
So <span>Vf = square root [2(-9.8)(11.0) + (18.0)^2] </span>
<span>Vf = 10.4 m/s your answer is correct.
For the part b, t is equals to the time took to reach and dy is equals to 11.0
you did, </span>11= 18t m/s-(1/2) 9.8t^2 then <span>-11 + 18t- 9.8t^2. By quadratic formula, for the way down the answer is 2.9 s while on it's way up, the answer is 0.77 s</span><span>
</span>
weight is vector vary from place to place
The formula to find the kinetic energy is:
Ek= 1/2 × m × v^2
1. Ek= 1/2×15×3^2
= 67.5 J
2.Ek= 1/2×8×4^2
=64 J
3.Ek= 1/2×12×5^2
= 150 J
4.Ek= 1/2×10×6^2
= 180 J
So the fourth dog has the most kinetic energy.
Answer:
B) shrinks
Explanation:
The magnetic force is a force exerted between two magnets, or two magnetic materials, or also on an electric charge moving in a magnetic field.
If we talk about magnetic material, the magnetic field they generates can be represented using a dipole: essentially, they have a north pole (where the lines of the field go out) and a south pole (where the lines of the field go in).
Also, the lines spread apart as we move away from the magnet itself. This means that the strength of the field (and so, the intensity of the force) decreases as we move away from the magnet.
Using this description, we can now understand that when we move the paper clip further from the magnet, the force exerted on the clip decreases, as the magnetic field becomes weaker. So, the correct answer is B.
Answer:
Explanation:
Let the four resistances of th wheat stone bridge is
P, Q, R and S and the value of each is 350 ohm.
Here, P and Q are in series.
R' = P + Q = 350 + 350 = 700 ohm
Then R and S are in series
R' = R + S = 350 + 350 = 700 ohm
Now R' and R'' are in parallel.
So, the equivalent resistance is
Req = R' x R'' / ( R' + R'')
Req = 700 / 2 = 350 ohm
Thus, the reading of ohmmeter is 350 ohm.